Appendix C

Stormwater Management

 Supporting DocumentationStormwater Management
Attachment 1: Pre-Development HydroCAD Report

Area Listing (all nodes)

Area (acres)	CN	Description (subcatchment-numbers)
50.470	39	$>75 \%$ Grass cover, Good, HSG A (1A, 1B, 1C, 1D, 1I, 2C, 2D, 2E)
117.200	61	>75\% Grass cover, Good, HSG B (1E, 1F, 1I, 2A, 2F, 2G, 2H, 3B)
62.430	74	>75\% Grass cover, Good, HSG C (1C, 1D, 1F, 1I, 2A, 2B, 2C, 2D)
32.810	80	>75\% Grass cover, Good, HSG D (1C, 1D, 1G, 1H, 1I, 2E, 2F, 3B)
1.080	85	Artificial Turf (1G, 1H)
1.560	30	Brush, Good, HSG A (1C, 1D, 1I)
24.380	48	Brush, Good, HSG B (1I, 1J)
0.990	65	Brush, Good, HSG C (1D, 1I)
39.550	73	Brush, Good, HSG D (1D, 1I, 1J, 3A, 3B)
2.700	100	Open Water (1C, 1F, 1I, 3B)
215.480	98	Pavement (1A, 1B, 1C, 1D, 1E, 1F, 1G, 1H, 1I, 1J, 2A, 2B, 2C, 2D, 2E, 2F, 2G, 2H,
		3A, 3B)
34.380	98	Roof (2A, 2B, 2G, 2H)
8.150	98	Roofs (1C, 1D, 1E, 11, 2C)
26.950	30	Woods, Good, HSG A (1C, 1D, 1I, 2A, 2E)
51.760	55	Woods, Good, HSG B (1I, 2F, 3A, 3B)
18.830	70	Woods, Good, HSG C (1C, 1D, 1I, 2E)
376.010	77	Woods, Good, HSG D (1C, 1D, 1I, 2A, 2E, 2F, 3A, 3B)
1.620	57	Woods/grass comb., Poor, HSG A (2A)
$1,066.350$	75	TOTAL AREA

Summary for Subcatchment 1A:

Runoff $=\quad 2.29$ cfs @ 12.09 hrs, Volume= 0.167 af, Depth= 2.54"
Routed to Pond 1AP : SPORTS COMPLEX INFILTRATION BASIN
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 2-year Rainfall=3.40"

Summary for Subcatchment 1B:

Runoff $=\quad 2.53$ cfs @ 12.09 hrs, Volume $=0.183$ af, Depth= $2.45{ }^{\prime \prime}$
Routed to Pond 1BP : SPORTS COMPLEX INFILTRATION BASIN
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 2-year Rainfall=3.40"

Area	ac)	CN	Description			
0.	. 100	$\begin{aligned} & 98 \\ & 39 \end{aligned}$	Pavement			
	. 100	91	Weighted Average 11.11\% Pervious Area 88.89\% Impervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)		Slope (ft/ft)	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description
6.0						Direct Entry

Summary for Subcatchment 1C:

Assumed pipe channel has slope 0.005 since no data given

Routed to Pond 1CP : MEMORIAL GROVE AVE. BASIN
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 2-year Rainfall=3.40"

$\mathrm{n}=0.013$ Concrete pipe, bends \& connections
$44.53,027$ Total

Summary for Subcatchment 1D:

Runoff $=\quad 4.42$ cfs @ 14.23 hrs , Volume= 1.767 af, Depth= $0.66{ }^{\prime \prime}$
Routed to Pond 1DP : UPSTREAM DOGLEG
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 2-year Rainfall=3.40"

[^0]
Summary for Subcatchment 1E:

Runoff = 25.58 cfs @ 12.09 hrs, Volume= 1.817 af, Depth= 1.93"
Routed to Pond 1EP : DOWNSTREAM DOGLEG
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 2-year Rainfall=3.40"

Area	(ac)	CN	Description			
6.	380	98	Pavement			
0.	980	98	Roofs			
	940	61	>75\% Grass cover, Good, HSG B			
	300	85	Weighted Average			
	940		34.87\% Pervious Area			
	360		65.1	3\% Imper	vious Area	
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)		Slope (ft/ft)	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description
6.0						Direct Entry

Summary for Subcatchment 1F:

Runoff = 18.83 cfs @ 12.09 hrs, Volume= 1.366 af, Depth= 1.36"
Routed to Pond 1FP : EXISTING PARKWAY BASIN
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 2-year Rainfall=3.40"

Summary for Subcatchment 1G:

Runoff = 5.30 cfs @ 12.39 hrs, Volume= 0.673 af, Depth= 2.54"

Routed to Pond 1GP : SPORTS COMPLEX BASIN
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 2-year Rainfall=3.40"

Summary for Subcatchment 1H:

Runoff $=4.04$ cfs @ 12.08 hrs, Volume= 0.301 af, Depth= 2.74"
Routed to Pond 1HP : SPORTS COMPLEX BASIN
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 2-year Rainfall=3.40"

Area	ac)	CN	Description			
	, 000	98	Pavement			
	090	85	Artificial Turf			
	230	80	>75\% Grass cover, Good, HSG D			
	320	94	Weighted Average			
	320		24.24\% Pervious Area			
	. 000		75.76\% Impervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$			Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.0						Direct Entry

Summary for Subcatchment 1I:
Runoff $=138.80$ cfs @ 13.50 hrs, Volume $=36.843$ af, Depth= 1.42"
Routed to Pond 1IP : UPSTREAM TACAN
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 2-year Rainfall=3.40"

Summary for Subcatchment 1J:

Runoff $=5.24$ cfs @ 12.41 hrs, Volume= 0.811 af, Depth= $0.53^{\prime \prime}$
Routed to Pond 1JP : DOWNSTREAM TACAN
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 2-year Rainfall=3.40"

22.2660 Total

Summary for Subcatchment 2A:

Runoff $=49.29$ cfs @ 13.61 hrs, Volume= 14.315 af, Depth= 1.11"
Routed to Pond 2AP : FRENCH'S STREAM WEST BRANCH
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 2-year Rainfall=3.40"

Summary for Subcatchment 2B:

Runoff = 125.27 cfs @ 12.08 hrs, Volume= 9.333 af, Depth= $2.74{ }^{\prime \prime}$
Routed to Pond 2BP : EXISTING BASIN
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Type III 24-hr 2-year Rainfall=3.40"

Summary for Subcatchment 2C:

Runoff $=24.26$ cfs @ 12.09 hrs, Volume= 1.798 af, Depth= 1.17"
Routed to Pond 2CP : EXISTING PARKWAY BASIN
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Type III 24-hr 2-year Rainfall=3.40"

Area	ac)	CN	Description			
* 8.	840	98	Pavement			
	680	98	Roofs			
	280	39	>75\% Grass cover, Good, HSG A			
	620	74	>75\% Grass cover, Good, HSG C			
	420	74	Weighted Average			
	. 900		42.89\% Pervious Area			
	520		57.11\% Impervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)		Slope (ft/ft)	Velocity (ft/sec)	$\begin{array}{r} \begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array} \end{array}$	Description
6.0						Direct Entry

Summary for Subcatchment 2D:

Runoff = 7.94 cfs @ 12.37 hrs, Volume= 0.993 af, Depth= 0.95"
Routed to Pond 2DP : EXISTING PARKWAY BASIN
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 2-year Rainfall=3.40"

23.9836 Total

Summary for Subcatchment 2E:

Runoff $=10.25$ cfs @ 13.39 hrs, Volume= 3.087 af, Depth= $0.61{ }^{\prime \prime}$
Routed to Pond 2EP : FRENCH'S STREAM WEST BRANCH
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Type III 24-hr 2-year Rainfall=3.40"

89.9 1,134 Total

Summary for Subcatchment 2F:

Runoff $=38.60$ cfs @ 13.15 hrs, Volume= $\quad 9.170$ af, Depth= $0.89{ }^{\prime \prime}$
Routed to Pond 2FP : FRENCH'S STREAM WEST BRANCH
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Type III 24-hr 2-year Rainfall=3.40"

Summary for Subcatchment 2G:

Assumed Tc value
Runoff $=\quad 10.95 \mathrm{cfs} @ 13.60$ hrs, Volume $=$
Routed to Pond 2AP : FRENCH'S STREAM WEST BRANCH

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 2-year Rainfall=3.40"

Summary for Subcatchment 2H:

Assumed Tc value
Runoff $=4.32$ cfs @ 13.60 hrs, Volume $=\quad 1.244$ af, Depth= $1.70 "$
Routed to Pond 2AP : FRENCH'S STREAM WEST BRANCH

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 2-year Rainfall=3.40"

Area	(ac)	CN	Description			
3.	370	98	Pavement			
1.	690	98	Roof			
	720	61	>75\% Grass cover, Good, HSG B			
	780	82	Weighted Average			
	720		42.37\% Pervious Area			
	060		57.6	3\% Imperv	ious Area	
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$			Slope (ft/ft)	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \\ \hline \end{array}$	Description
120.0						Direct Entry

Summary for Subcatchment 3A:

Runoff $=34.70$ cfs @ 13.05 hrs, Volume= $\quad 7.325$ af, Depth= 1.42"
Routed to Pond 3AP : FRENCH'S STREAM EAST BRANCH
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 2-year Rainfall=3.40"

74.8 1,438 Total

Summary for Subcatchment 3B:

Runoff $=51.95$ cfs @ 13.44 hrs, Volume= 14.215 af, Depth= 1.29"
Routed to Pond 3BP : FRENCH'S STREAM EAST BRANCH
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 2-year Rainfall=3.40"

Summary for Reach 1R: DP-1 TACAN OUTFALL

```
Inflow Area = 437.470 ac, 35.83% Impervious, Inflow Depth > 1.31" for 2-year event
Inflow = 64.99 cfs @ 15.18 hrs, Volume= 47.932 af
Outflow = 64.99 cfs @ 15.18 hrs, Volume= 47.932 af, Atten= 0%, Lag= 0.0 min
    Routed to Pond 2FP : FRENCH'S STREAM WEST BRANCH
```

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs

Summary for Reach 2R: DP-2 FRENCH'S STREAM WEST BRANCH

```
Inflow Area = 872.630 ac, 27.98% Impervious, Inflow Depth = 1.21" for 2-year event
Inflow = 177.44 cfs @ 13.78 hrs, Volume= 87.973 af
Outflow = 177.44 cfs @ 13.78 hrs, Volume= 87.973 af, Atten= 0%, Lag= 0.0 min
```

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs

Summary for Reach 3R: DP-3 FRENCH'S STREAM EAST BRANCH

```
Inflow Area = 193.720 ac, 8.56% Impervious, Inflow Depth = 1.33" for 2-year event
Inflow = 76.28 cfs @ 13.59 hrs, Volume= 21.534 af
Outflow = 76.28 cfs @ 13.59 hrs, Volume= 21.534 af, Atten= 0%, Lag= 0.0 min
```

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs

Summary for Pond 1AP: SPORTS COMPLEX INFILTRATION BASIN

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 170.39' @ 12.37 hrs Surf.Area= 2,201 sf Storage= 2,430 cf
Plug-Flow detention time $=125.1$ min calculated for 0.167 af (100% of inflow)
Center-of-Mass det. time= 125.1 min (920.7-795.6)

Volume	Invert	Avail.Storage	Storage Description
\#1A	168.50'	1,559 cf	24.83'W x 88.64'L x 2.33'H Field A
			5,136 cf Overall - 1,238 cf Embedded = 3,898 cf x 40.0\% Voids
\#2A	169.00'	1,238 cf	ADS_StormTech SC-310 +Capx 84 Inside \#1
			Effective Size $=28.9$ "W x 16.0"H => $2.07 \mathrm{sf} \times 7.12^{\prime} \mathrm{L}=14.7 \mathrm{cf}$
			Overall Size $=34.0$ "W $\times 16.0^{\prime \prime} \mathrm{H} \times 7.56{ }^{\text {'L }}$ with 0.44 ' Overlap
			84 Chambers in 7 Rows
\#3	168.50'	85 cf	4.00'D x 6.80'H CB-Impervious
\#4	175.20'	449 cf	Ponding at CB (Prismatic)Listed below (Recalc)

> 3,332 cf Total Available Storage

Storage Group A created with Chamber Wizard

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
175.20	10	0	0
176.00	300	124	124
176.50	1,000	325	449

Device	Routing	Invert	Outlet Devices
\#1	Primary	170.00'	18.0" Round Culvert
			$\mathrm{L}=13.0{ }^{\prime}$ RCP, end-section conforming to fill, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 170.00' / 169.85' S=0.0115 '/' Cc= 0.900 $\mathrm{n}=0.013$. Flow Area $=1.77 \mathrm{sf}$
\#2	Discarded	168.50'	2.410 in/hr Exfiltration over Surface area Phase-In= 0.01'

Discarded OutFlow Max=0.12 cfs @ 11.44 hrs HW=168.58' (Free Discharge) ${ }_{2=\text { Exfiltration (Exfiltration Controls }}$ (0.12 cfs)
L2=Exfiltration (Exfiltration Controls 0.12 cfs)
Primary OutFlow Max=0.66 cfs @ 12.37 hrs HW=170.39' TW=150.62' (Dynamic Tailwater)
L-1=Culvert (Barrel Controls 0.66 cfs @ 2.72 fps)

Pond 1AP: SPORTS COMPLEX INFILTRATION BASIN - Chamber Wizard Field A
Chamber Model = ADS_StormTechSC-310 +Cap (ADS StormTech®SC-310 with cap length)
Effective Size $=28.9$ "W $\times 16.0^{\prime \prime} \mathrm{H}=>2.07 \mathrm{sf} \times 7.12^{\prime} \mathrm{L}=14.7 \mathrm{cf}$
Overall Size $=34.0$ "W x 16.0"H x $7.56^{\prime} \mathrm{L}$ with 0.44 ' Overlap
34.0" Wide $+6.0^{\prime \prime}$ Spacing $=40.0$ " C-C Row Spacing

12 Chambers/Row x 7.12' Long +0.60' Cap Length $x 2=86.64$ ' Row Length $+12.0^{\prime \prime}$ End Stone $\times 2=88.64{ }^{\prime}$ Base Length
7 Rows x 34.0" Wide + 6.0" Spacing x 6 + 12.0" Side Stone x 2 = 24.83' Base Width
6.0" Stone Base + 16.0" Chamber Height $+6.0^{\prime \prime}$ Stone Cover $=2.33^{\prime}$ Field Height

84 Chambers $\times 14.7$ cf $=1,238.3$ cf Chamber Storage
5,136.2 cf Field $-1,238.3$ cf Chambers $=3,897.9$ cf Stone $\times 40.0 \%$ Voids $=1,559.1$ cf Stone Storage
Chamber Storage + Stone Storage $=2,797.5 \mathrm{cf}=0.064$ af
Overall Storage Efficiency = 54.5\%
Overall System Size $=88.64^{\prime} \times 24.83^{\prime} \times 2.33^{\prime}$
84 Chambers
190.2 cy Field
144.4 cy Stone

Summary for Pond 1BP: SPORTS COMPLEX INFILTRATION BASIN

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 170.82' @ 12.33 hrs Surf.Area= 2,378 sf Storage= 2,564 cf
Plug-Flow detention time $=124.3 \mathrm{~min}$ calculated for 0.183 af (100% of inflow)
Center-of-Mass det. time= 124.3 min (924.5-800.2)

Volume	Invert	Avail.Storage	Storage Description
\#1A	169.00'	1,683 cf	24.83'W x 95.76'L x 2.33 'H Field A
			5,549 cf Overall - 1,342 cf Embedded = 4,207 cf $\times 40.0 \%$ Voids
\#2A	169.50'	1,342 cf	ADS_StormTech SC-310 +Capx 91 Inside \#1
			Effective Size $=28.9$ "W x 16.0"H $=>2.07 \mathrm{sf} \times 7.12 \mathrm{~L}=14.7$
			Overall Size $=34.0$ " $\mathrm{W} \times 16.0$ " $\mathrm{H} \times 7.56$ 'L with $0.44{ }^{\text {' O O }}$ Oerlap
			91 Chambers in 7 Rows
\#3	$169.00{ }^{\prime}$	72 cf	4.00'D x 5.70'H CB-Impervious
\#4	172.70'	572 cf	Ponding at CB (Prismatic)Listed below (Recalc)

> 3,668 cf Total Available Storage

Storage Group A created with Chamber Wizard

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
172.70	10	0	0
173.00	300	47	47
174.50	400	525	572

Device	Routing	Invert	Outlet Devices
\#1	Primary	170.50'	12.0" Round Culvert X 2.00
			$\mathrm{L}=23.0$ ' RCP, end-section conforming to fill, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 170.50' / 170.20' S=0.0130 '/' Cc= 0.900
\#2	Discarded	169.00'	$2.410 \mathrm{in} / \mathrm{hr}$ Exfiltration over Surface area Phase-In= $0.01{ }^{\prime}$

Discarded OutFlow Max=0.13 cfs @ $11.38 \mathrm{hrs} \mathrm{HW}=169.06$ ' (Free Discharge) ${ }_{2=\text { Exfiltration (Exfiltration Controls }}$ (0.13 cfs)
L2=Exfiltration (Exfiltration Controls 0.13 cfs)
Primary OutFlow Max=0.84 cfs @ 12.33 hrs HW=170.82' TW=150.54' (Dynamic Tailwater)
L-1=Culvert (Barrel Controls 0.84 cfs @ 2.85 fps)

Pond 1BP: SPORTS COMPLEX INFILTRATION BASIN - Chamber Wizard Field A
Chamber Model = ADS_StormTechSC-310 +Cap (ADS StormTech®SC-310 with cap length)
Effective Size $=28.9$ "W $\times 16.0^{\prime \prime} \mathrm{H}=>2.07 \mathrm{sf} \times 7.12^{\prime} \mathrm{L}=14.7 \mathrm{cf}$
Overall Size $=34.0$ "W x 16.0"H x $7.56^{\prime} \mathrm{L}$ with 0.44 ' Overlap
34.0" Wide +6.0 " Spacing $=40.0$ " C-C Row Spacing

13 Chambers/Row x 7.12' Long +0.60' Cap Length $x 2=93.76$ ' Row Length $+12.0^{\prime \prime}$ End Stone $\times 2=95.76^{\prime}$ Base Length
7 Rows x 34.0" Wide + 6.0" Spacing x 6 + 12.0" Side Stone x 2 = 24.83' Base Width
6.0" Stone Base + 16.0" Chamber Height $+6.0^{\prime \prime}$ Stone Cover $=2.33$ ' Field Height

91 Chambers $\times 14.7$ cf $=1,341.5$ cf Chamber Storage
$5,548.8$ cf Field $-1,341.5$ cf Chambers $=4,207.2$ cf Stone $\times 40.0 \%$ Voids $=1,682.9$ cf Stone Storage
Chamber Storage + Stone Storage $=3,024.4 \mathrm{cf}=0.069 \mathrm{af}$
Overall Storage Efficiency $=54.5 \%$
Overall System Size $=95.76^{\prime} \times 24.83^{\prime} \times 2.33^{\prime}$
91 Chambers
205.5 cy Field
155.8 cy Stone

Summary for Pond 1CP: MEMORIAL GROVE AVE. BASIN

Assumed slope of 0.005 for outlet culvert.

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 151.90' @ 13.42 hrs Surf.Area= 57,158 sf Storage= $98,206 \mathrm{cf}$
Plug-Flow detention time $=195.8$ min calculated for 5.732 af (99% of inflow)
Center-of-Mass det. time $=190.0 \mathrm{~min}(1,067.2-877.2)$

Primary OutFlow Max=13.43 cfs @ 13.42 hrs HW=151.90' TW=144.46' (Dynamic Tailwater)
L1=Culvert (Barrel Controls 13.43 cfs @ 5.07 fps)
Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=150.00' TW=142.50' (Dynamic Tailwater)
L-2=Broad-Crested Rectangular Weir(Controls 0.00 cfs)

Summary for Pond 1DP: UPSTREAM DOGLEG

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 144.59' @ 14.08 hrs Surf.Area= 1,022 sf Storage= 489 cf
Plug-Flow detention time $=0.4 \mathrm{~min}$ calculated for 7.500 af (100% of inflow)
Center-of-Mass det. time $=0.3 \mathrm{~min}(1,056.8-1,056.4)$

Device Routing Invert Outlet Devices
\#1 Primary 142.60' 42.0" Round Culvert

L= 782.0' RCP, end-section conforming to fill, $\mathrm{Ke}=0.500$ Inlet / Outlet Invert= 142.60' / 142.26' S=0.0004 '/' Cc= 0.900 $n=0.013$, Flow Area $=9.62$ sf
\#2 Secondary
142.50' 42.0" Round Culvert
$\mathrm{L}=782.0^{\prime}$ RCP, end-section conforming to fill, $\mathrm{Ke}=0.500$ Inlet / Outlet Invert= 142.50' / 142.19' S=0.0004 '/' Cc=0.900 $\mathrm{n}=0.013$, Flow Area $=9.62 \mathrm{sf}$

Primary OutFlow Max=8.05 cfs @ 13.75 hrs HW=144.56' TW=144.09' (Dynamic Tailwater)
L-1=Culvert (Outlet Controls 8.05 cfs @ 2.10 fps)
Secondary OutFlow Max=8.76 cfs @ 13.73 hrs HW=144.56' TW=144.08' (Dynamic Tailwater)
—2=Culvert (Outlet Controls 8.76 cfs @ 2.14 fps)

Summary for Pond 1EP: DOWNSTREAM DOGLEG

 Routed to Pond 1IP : UPSTREAM TACAN

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 144.18' @ 14.35 hrs Surf.Area= 1,669 sf Storage= 1,728 cf
Plug-Flow detention time= 1.4 min calculated for 9.316 af (100% of inflow)
Center-of-Mass det. time $=1.4 \mathrm{~min}(1,012.7-1,011.3$)

Primary OutFlow Max=25.40 cfs @ 12.10 hrs HW=143.79' TW=138.78' (Dynamic Tailwater) $L_{1=C u l v e r t ~(O u t l e t ~ C o n t r o l s ~}^{25.40}$ cfs @ 3.71 fps)

Summary for Pond 1FP: EXISTING PARKWAY BASIN

Primary Culvert - Assumed Inverts, pipe diameter, and pipe material.

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 146.29' @ 24.34 hrs Surf.Area= 22,680 sf Storage= 59,490 cf
Plug-Flow detention time= (not calculated: initial storage exceeds outflow)
Center-of-Mass det. time= (not calculated: no outflow)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=143.00' TW=137.80' (Dynamic Tailwater)
L-1=Culvert (Controls 0.00 cfs)
Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=143.00' TW=137.80' (Dynamic Tailwater)
$\complement_{2=B r o a d-C r e s t e d ~ R e c t a n g u l a r ~ W e i r(~ C o n t r o l s ~} 0.00 \mathrm{cfs}$)

Summary for Pond 1GP: SPORTS COMPLEX BASIN

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 168.31' @ 12.62 hrs Surf.Area= 2,853 sf Storage= 3,949 cf

Plug-Flow detention time $=29.9$ min calculated for 0.666 af (99% of inflow)
Center-of-Mass det. time $=22.5 \mathrm{~min}$ (839.6-817.1)

Primary OutFlow Max=3.97 cfs @ 12.62 hrs HW=168.31' TW=139.73' (Dynamic Tailwater)
—1=Culvert (Barrel Controls 3.97 cfs @ 5.06 fps)
Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=166.00' TW=137.80' (Dynamic Tailwater)
L2=Broad-Crested Rectangular Weir(Controls 0.00 cfs)

Summary for Pond 1HP: SPORTS COMPLEX BASIN

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 163.57' @ 12.14 hrs Surf.Area= 823 sf Storage= 816 cf
Plug-Flow detention time $=12.1$ min calculated for 0.299 af (99% of inflow)
Center-of-Mass det. time $=7.7 \mathrm{~min}(792.9-785.1)$

Primary OutFlow Max=3.21 cfs @ 12.14 hrs HW=163.56' TW=138.87' (Dynamic Tailwater)
-1=Culvert (Barrel Controls 3.21 cfs @ 4.09 fps)
Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=161.00' TW=137.80' (Dynamic Tailwater)
$廿_{2=B r o a d-C r e s t e d ~ R e c t a n g u l a r ~ W e i r ~(~ C o n t r o l s ~} 0.00 \mathrm{cfs}$)

Summary for Pond 1IP: UPSTREAM TACAN

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 143.29' @ 15.27 hrs Surf.Area= 384,554 sf Storage= 651,132 cf
Plug-Flow detention time $=117.0$ min calculated for 47.115 af (100% of inflow)
Center-of-Mass det. time $=116.8 \mathrm{~min}(1,066.2-949.4)$

| Volume | Invert | Avail.Storage | Storage Description |
| :---: | ---: | ---: | ---: | :--- |
| $\# 1$ | 137.80^{\prime} | $4,634,030 \mathrm{cf}$ | Custom Stage Data (Prismatic)Listed below (Recalc) |

Elevation (feet)	Surf.Area $($ sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
137.80	0	0	0
138.00	42,340	4,234	4,234
139.00	55,626	48,983	53,217
140.00	71,656	63,641	116,858
141.00	96,790	84,223	201,081
142.00	154,769	125,780	326,860
143.00	296,905	225,837	552,697
144.00	600,300	448,603	$1,001,300$
145.00	$1,084,818$	842,559	$1,843,859$
146.00	$1,388,214$	$1,236,516$	$3,080,375$
147.00	$1,719,095$	$1,553,655$	$4,634,030$

Device	Routing	Invert	Outlet Devices
\#1	Primary	137.80'	24.0" Round Culvert
			$\mathrm{L}=30.5$ ' RCP, end-section conforming to fill, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 137.80' / 137.40' S=0.0131 '/' Cc= 0.900
			$\mathrm{n}=0.013$ Concrete pipe, bends \& connections, Flow Area=3.14 sf
\#2	Secondary	137.80'	24.0" Round Culvert
			$\mathrm{L}=30.5$ ' RCP, end-section conforming to fill, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 137.80' / 137.30'S=0.0164 '/' Cc= 0.900
			$\mathrm{n}=0.013$ Concrete pipe, bends \& connections, Flow Area=3.14 sf
\#3	Tertiary	145.50'	30.0' long x 20.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.200 .400 .600 .801 .001 .201 .401 .60
			Coef. (English) 2.682 .702 .702 .642 .632 .642 .642 .63

Primary OutFlow Max=32.05 cfs @ 15.27 hrs HW=143.29' TW=135.71' (Dynamic Tailwater) $廿_{1=C u l v e r t ~(I n l e t ~ C o n t r o l s ~} 32.05$ cfs @ 10.20 fps)

Secondary OutFlow Max=32.05 cfs @ 15.27 hrs HW=143.29' TW=135.71' (Dynamic Tailwater) —2=Culvert (Inlet Controls 32.05 cfs @ 10.20 fps)

Tertiary OutFlow Max=0.00 cfs @ $0.00 \mathrm{hrs} \mathrm{HW}=137.80^{\prime}$ TW=133.50' (Dynamic Tailwater)
—3=Broad-Crested Rectangular Weir(Controls 0.00 cfs)

Summary for Pond 1JP: DOWNSTREAM TACAN

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 135.71' @ 15.18 hrs Surf.Area= 1,295 sf Storage= 1,432 cf
Plug-Flow detention time $=0.4 \mathrm{~min}$ calculated for 47.932 af (100% of inflow)
Center-of-Mass det. time $=0.4 \mathrm{~min}(1,064.1-1,063.8)$

Volume	Invert Avail.Storage Storage Description		
\#1	133.50'	98,669 cf Custo	tage Data (Prismatic)Listed below (Recalc)
$\begin{array}{r} \text { Elevation } \\ \quad \text { feet) } \end{array}$	$\begin{array}{r} \text { Surf.Area } \\ (\mathrm{sq}-\mathrm{ft}) \\ \hline \end{array}$	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
133.50	0	0	0
136.00	1,465	1,831	1,831
137.00	5,100	3,283	5,114
138.00	6,735	5,918	11,031
139.00	8,330	7,533	18,564
140.00	9,930	9,130	27,694
141.00	11,565	10,748	38,441
142.00	13,220	12,393	50,834
143.00	15,005	14,113	64,946
144.00	16,830	15,918	80,864
145.00	18,780	17,805	98,669

Device	Routing	Invert	Outlet Devices
$\# 1$	Primary	133.50^{\prime}	$\mathbf{6 0 . 0}$ " Round Culvert X 2.00

L= 899.0' RCP, end-section conforming to fill, $\mathrm{Ke}=0.500$ Inlet / Outlet Invert= 133.50' / 130.80' S=0.0030 '/' Cc= 0.900 $\mathrm{n}=0.013$ Concrete pipe, bends \& connections, Flow Area= 19.63 sf

Primary OutFlow Max=64.99 cfs @ 15.18 hrs HW=135.71' TW=0.00' (Dynamic Tailwater)
—1=Culvert (Barrel Controls 64.99 cfs @ 5.71 fps)

Summary for Pond 2AP: FRENCH'S STREAM WEST BRANCH

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 144.84' @ 13.79 hrs Surf.Area= 48,939 sf Storage= 30,872 cf
Plug-Flow detention time= 3.6 min calculated for 27.695 af (100% of inflow)
Center-of-Mass det. time $=3.6 \mathrm{~min}$ (931.7-928.1)

Device	Routing	Invert	Outlet Devices
\#1	Primary	141.70'	48.0" Round Culvert
			$\mathrm{L}=126.0$ ' RCP, end-section conforming to fill, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 141.70' / 141.60' S=0.0008 '/' Cc= 0.900 $\mathrm{n}=0.013$, Flow Area= 12.57 sf
\#2	Secondary	141.70'	48.0" Round Culvert
			$\mathrm{L}=126.0$ ' RCP, end-section conforming to fill, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 141.70' / 141.50' S=0.0016 '/' Cc= 0.900
			$\mathrm{n}=0.013$, Flow Area= 12.57 sf

Primary OutFlow Max=40.50 cfs @ 13.79 hrs HW=144.84' TW=141.56' (Dynamic Tailwater)
L1=Culvert (Barrel Controls 40.50 cfs @ 5.27 fps)
Secondary OutFlow Max=42.73 cfs @ 13.79 hrs HW=144.84' TW=141.56' (Dynamic Tailwater)
L2=Culvert (Barrel Controls 42.73 cfs @ 5.56 fps)

Summary for Pond 2BP: EXISTING BASIN

Routed to Pond 2AP : FRENCH'S STREAM WEST BRANCH
Secondary = $\quad 0.00$ cfs @ 0.00 hrs, Volume= 0.000 af
Routed to Pond 2AP : FRENCH'S STREAM WEST BRANCH
Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 147.76' @ 12.51 hrs Surf.Area= 67,575 sf Storage= 163,282 cf
Plug-Flow detention time $=116.8$ min calculated for 9.009 af (97% of inflow)
Center-of-Mass det. time $=96.7 \mathrm{~min}(881.8-785.1)$

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	143.00	482,855 cf	Custom Stage Data (Prismatic)Listed below (Recalc)

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
143.00	10,920	0	0
144.00	16,580	13,750	13,750
145.00	28,700	22,640	36,390
146.00	39,560	34,130	70,520
147.00	53,515	46,538	117,058
148.00	71,930	62,723	179,780
149.00	80,230	76,080	255,860
150.00	88,130	84,180	340,040
151.00	95,000	91,565	431,605
151.50	110,000	51,250	482,855

Device	Routing	Invert	Outlet Devices
\#1	Primary	144.00'	24.0" Round Culvert
			$\mathrm{L}=79.0^{\prime} \mathrm{RCP}$, end-section conforming to fill, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 144.00' / 143.21' S=0.0100 '/l' Cc= 0.900 $\mathrm{n}=0.013$, Flow Area $=3.14 \mathrm{sf}$
\#2	Secondary	150.00'	10.0' long x 20.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.200 .400 .600 .801 .001 .201 .401 .60
			Coef. (English) 2.682 .702 .702 .642 .632 .642 .642 .63

Primary OutFlow Max=25.15 cfs @ 12.51 hrs HW=147.76' TW=143.76' (Dynamic Tailwater)
_1=Culvert (Inlet Controls 25.15 cfs @ 8.00 fps)
Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=143.00' TW=141.70' (Dynamic Tailwater)
$\ell_{2=B r o a d-C r e s t e d ~ R e c t a n g u l a r ~ W e i r(~ C o n t r o l s ~} 0.00 \mathrm{cfs}$)

Summary for Pond 2CP: EXISTING PARKWAY BASIN

Existing basin information taken from Weymouth Patriot Parkway Utility As-Builts, prepared by LM Heavy Civil Construction LLC, dated October 15, 2018.

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
138.00	730	0	0
139.00	1,695	1,213	1,213
140.00	3,150	2,423	3,635
141.00	6,840	4,995	8,630
142.00	12,885	9,863	18,493
143.00	17,405	15,145	33,638
144.00	21,190	19,298	52,935
145.00	24,465	22,828	75,763
146.00	27,780	26,123	101,885
147.00	31,160	29,470	131,355
148.00	34,590	32,875	164,230
149.00	38,295	36,443	200,673
150.00	42,170	40,233	240,905

Device Routing Invert Outlet Devices
\#1 Primary $142.30^{\prime} \quad \mathbf{3 0 . 0} \mathbf{0}^{\prime \prime}$ Round Culvert
$\mathrm{L}=65.0^{\prime}$ RCP, end-section conforming to fill, $\mathrm{Ke}=0.500$ Inlet / Outlet Invert= 142.30' / 141.50' S=0.0123 '/l' Cc= 0.900 $\mathrm{n}=0.013$, Flow Area= 4.91 sf
\#2 Device $1 \quad 146.00^{\prime} \quad \mathbf{2 4 . 0 "} \times \mathbf{2 4 . 0} \mathbf{" H}^{\prime \prime}$ Horiz. Orifice/Grate C= 0.600 Limited to weir flow at low heads

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=138.00' TW=138.00' (Dynamic Tailwater)
$L_{1}=$ Culvert (Controls 0.00 cfs)
$\mathcal{L}_{2}=$ Orifice/Grate (Controls 0.00 cfs)

Summary for Pond 2DP: EXISTING PARKWAY BASIN

Existing basin information taken from Weymouth Patriot Parkway Utility As-Builts, prepared by LM Heavy Civil Construction LLC, dated October 15, 2018.

Inflow Area =	12.580 ac, 44.83% Impervious,	th $=0.95$ " for 2-year event
Inflow	7.94 cfs @ 12.37 hrs , Volume=	0.993 af
Outflow	0.32 cfs @ 20.63 hrs , Volume=	0.124 af, Atten= 96\%, Lag= 495.5 min
Primary	0.32 cfs @ 20.63 hrs , Volume=	0.124 af

Routed to Pond 2EP : FRENCH'S STREAM WEST BRANCH
Secondary = $\quad 0.00$ cfs @ 0.00 hrs, Volume= 0.000 af Routed to Pond 2EP : FRENCH'S STREAM WEST BRANCH

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 146.25' @ 20.63 hrs Surf.Area= 10,635 sf Storage= 38,403 cf
Plug-Flow detention time $=601.4$ min calculated for 0.124 af (12% of inflow)
Center-of-Mass det. time $=441.6 \mathrm{~min}(1,329.5-887.9)$

Primary OutFlow Max=0.32 cfs @ 20.63 hrs HW=146.25' TW=139.04' (Dynamic Tailwater)
-1=Culvert (Passes 0.32 cfs of 26.00 cfs potential flow)
$L_{2=O r i f i c e / G r a t e ~(W e i r ~ C o n t r o l s ~} 0.32$ cfs @ 0.76 fps)
Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=139.00' TW=138.00' (Dynamic Tailwater)
$\complement_{3=\text { Broad-Crested Rectangular Weir (Controls } 0.00 \text { cfs) }}$

Summary for Pond 2EP: FRENCH'S STREAM WEST BRANCH

Per site visit outlet consists of one 60-inch culvert.

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
138.00	0	0	0
140.00	9,600	9,600	9,600
141.00	13,135	11,368	20,968
142.00	35,665	24,400	45,368
143.00	47,280	41,473	86,840
144.00	58,400	52,840	139,680
145.00	71,585	64,993	204,673
146.00	85,230	78,408	283,080
147.00	106,515	95,873	378,953
148.00	183,900	145,208	524,160

Device Routing Invert Outlet Devices
\#1 Primary 138.00' 60.0" Round Culvert
$\mathrm{L}=380.0^{\prime}$ RCP, end-section conforming to fill, $\mathrm{Ke}=0.500$
Inlet / Outlet Invert= 138.00' / 135.70' S=0.0061 '/' Cc= 0.900 $\mathrm{n}=0.013$ Concrete pipe, bends \& connections, Flow Area= 19.63 sf

Primary OutFlow Max=91.37 cfs @ 13.89 hrs HW=141.57' TW=130.42' (Dynamic Tailwater)
$L_{1=C u l v e r t ~(B a r r e l ~ C o n t r o l s ~} 91.37$ cfs @ 8.54 fps)

Summary for Pond 2FP: FRENCH'S STREAM WEST BRANCH

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 130.43' @ 13.78 hrs Surf.Area= 19,660 sf Storage= 44,178 cf

Plug-Flow detention time $=5.9 \mathrm{~min}$ calculated for 87.961 af (100% of inflow)
Center-of-Mass det. time $=5.0 \mathrm{~min}(1,013.6-1,008.6)$

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	125.90^{\prime}	665,278 cf	Custom Stage Data (Prismatic)Listed below (Recalc)

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
125.90	0	0	0
130.00	17,650	36,182	36,182
131.00	22,340	19,995	56,177
132.00	56,105	39,223	95,400
133.00	76,835	66,470	161,870
134.00	93,610	85,223	247,092
135.00	111,175	102,393	349,485
136.00	153,700	132,438	481,922
137.00	213,010	183,355	665,278

Device	Routing	Invert	Outlet Devices
\#1	Primary	127.60'	60.0" Round Culvert
			$\mathrm{L}=34.0$ ' RCP, end-section conforming to fill, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 126.60' / 127.60' S=-0.0294 '/' Cc= 0.900 $\mathrm{n}=0.013$, Flow Area= 19.63 sf
\#2	Secondary	126.70'	72.0" Round Culvert
			$\mathrm{L}=34.0$ ' RCP, end-section conforming to fill, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 125.90' / 126.70' S=-0.0235 '/' Cc= 0.900 $\mathrm{n}=0.013$, Flow Area $=28.27 \mathrm{sf}$
\#3	Tertiary	135.50'	10.0' long x 20.0' breadth Spillway over Path
			Head (feet) 0.200 .400 .600 .801 .001 .201 .401 .60
			Coef. (English) 2.682 .702 .702 .642 .632 .642 .642 .63

Primary OutFlow Max=65.60 cfs @ 13.78 hrs HW=130.43' TW=0.00' (Dynamic Tailwater) —1=Culvert (Inlet Controls 65.60 cfs @ 5.73 fps)

Secondary OutFlow Max=111.84 cfs @ 13.78 hrs HW=130.43' TW=0.00' (Dynamic Tailwater)
—2=Culvert (Barrel Controls 111.84 cfs @ 6.77 fps)
Tertiary OutFlow Max=0.00 cfs @ 0.00 hrs HW=125.90' TW=0.00' (Dynamic Tailwater)
$\leftarrow_{3=\text { Spillway over Path (Controls } 0.00 \mathrm{cfs} \text {) }}$

Summary for Pond 3AP: FRENCH'S STREAM EAST BRANCH

Inflow Area =	61.820 ac ,	8.41\% Impervious,	Iow Dept	2-year event
Inflow	34.70 cfs @	13.05 hrs, Volume=	- 7.325 af	
Outflow	34.35 cfs @	13.10 hrs , Volume=	- 7.319 af ,	en= $1 \%, L$ Lag $=3.1 \mathrm{~m}$
Primary	34.35 cfs @	13.10 hrs , Volume=	7.319 af	
Routed to Pond 3BP : FRENCH'S STREAM EAST BRANCH				
Secondary =	0.00 cfs @	$0.00 \mathrm{hrs}, \mathrm{Volume=}$	0.000 af	
		'S STREAM EA		

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 144.79' @ 13.10 hrs Surf.Area= 3,411 sf Storage= 5,608 cf
Plug-Flow detention time $=4.0 \mathrm{~min}$ calculated for 7.319 af (100% of inflow)
Center-of-Mass det. time= 3.2 min (913.0-909.8)

Summary for Pond 3BP: FRENCH'S STREAM EAST BRANCH

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 132.93' @ 13.59 hrs Surf.Area= 36,830 sf Storage= 59,880 cf
Plug-Flow detention time $=8.8 \mathrm{~min}$ calculated for 21.531 af (100% of inflow)
Center-of-Mass det. time $=8.8 \mathrm{~min}$ (943.4-934.6)

Primary OutFlow Max=76.28 cfs @ 13.59 hrs HW=132.93' TW=0.00' (Dynamic Tailwater)
L- $_{1=C u l v e r t ~(B a r r e l ~ C o n t r o l s ~} 76.28$ cfs @ 6.74 fps)
Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=129.20' TW=0.00' (Dynamic Tailwater)
-2=Spillway over Path (Controls 0.00 cfs)

Summary for Subcatchment 1A:

Runoff $=3.68$ cfs @ 12.08 hrs, Volume= 0.276 af, Depth= 4.19"
Routed to Pond 1AP : SPORTS COMPLEX INFILTRATION BASIN
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10-year Rainfall=5.10"

Summary for Subcatchment 1B:

Runoff $=\quad 4.12$ cfs @ 12.08 hrs, Volume= 0.306 af, Depth= 4.08"
Routed to Pond 1BP : SPORTS COMPLEX INFILTRATION BASIN
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10-year Rainfall=5.10"

Summary for Subcatchment 1C:

Assumed pipe channel has slope 0.005 since no data given
Runoff $=73.04$ cfs @ 12.61 hrs, Volume $=\quad 11.111$ af, Depth= 2.89"

Routed to Pond 1CP : MEMORIAL GROVE AVE. BASIN
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10 -year Rainfall= $=5.10$

Area	ac) C	N Desc	ription		
16.950					
2.060		PavementRoofs			
0.750		100 Ope	Open Water		
0.690		30 Wo	Voods, Good, HSG A		
	980	Woods, Good, HSG C			
	380	77 Wood	Woods, Good, HSG D		
	150	30 Brus	Brush, Good, HSG A		
	810	$39>75$	75% Grass cover, Good, HSG A		
	130	74 >75	75\% Grass cover, Good, HSG C		
	270	$80>75$	75\% Grass cover, Good, HSG D		
46.170		79 Weig	Veighted Average		
26.410		57.20\% Pervious Area			
19.760		42.80\% Impervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	$\begin{array}{r} \text { Length } \\ \text { (feet) } \\ \hline \end{array}$	$\begin{array}{r} \text { Slope } \\ (\mathrm{ft} / \mathrm{ft}) \end{array}$	Velocity (ft/sec)	Capacity (cfs)	Description
23.4	100	0.0021	0.07		Sheet Flow, Grass: Short n=0.150 P2=3.40"
4.4	94	0.0026	0.36		Shallow Concentrated Flow,
					Short Grass Pasture Kv= 7.0 fps
7.7	252	0.0061	0.55		Shallow Concentrated Flow,
					Short Grass Pasture Kv= 7.0 fps
0.1	14	0.0701	1.85		Shallow Concentrated Flow,
					Short Grass Pasture Kv= 7.0 fps
2.9	154	0.0155	0.87		Shallow Concentrated Flow,
					Short Grass Pasture Kv= 7.0 fps
1.4	438	0.0050	5.09	16.00	Pipe Channel,
					24.0" Round Area= 3.1 sf Perim=6.3' r=0.50' $\mathrm{n}=0.013$ Concrete pipe, bends \& connections
0.8	288	0.0050	5.91	29.00	Pipe Channel,
					30.0" Round Area= 4.9 sf Perim= 7.9' r= 0.63' $\mathrm{n}=0.013$ Concrete pipe, bends \& connections
0.7	295	0.0050	6.67	47.16	Pipe Channel,
					36.0" Round Area= 7.1 sf Perim= 9.4' r= 0.75^{\prime} $\mathrm{n}=0.013$ Concrete pipe, bends \& connections
2.9	1,299	0.0050	7.39	71.14	Pipe Channel,
					42.0" Round Area= 9.6 sf Perim= 11.0' $\mathrm{r}=0.88{ }^{\prime}$
					$\mathrm{n}=0.013$ Concrete pipe, bends \& connections
0.2	93	0.0050	8.08	101.57	Pipe Channel, 48.0" Round Area= 12.6 sf Perim= 12.6' r= 1.00'

$\mathrm{n}=0.013$ Concrete pipe, bends \& connections
$44.53,027$ Total

Summary for Subcatchment 1D:

Runoff = 12.72 cfs @ 14.07 hrs, Volume= 4.440 af, Depth= $1.65{ }^{\prime \prime}$
Routed to Pond 1DP : UPSTREAM DOGLEG
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10-year Rainfall=5.10"

[^1]
Summary for Subcatchment 1E:

Runoff $=45.35$ cfs @ 12.09 hrs, Volume= 3.259 af, Depth= 3.46
Routed to Pond 1EP : DOWNSTREAM DOGLEG
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10-year Rainfall=5.10"

Summary for Subcatchment 1F:

Runoff $=38.35$ cfs @ 12.09 hrs, Volume $=\quad 2.725$ af, Depth= 2.71"
Routed to Pond 1FP : EXISTING PARKWAY BASIN
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10-year Rainfall=5.10"

Area		CN	Description			
* 3.	320	98	Pavement			
0.	410	100	Open Water			
	880	61	>75\% Grass cover, Good, HSG B			
	470	74	>75\% Grass cover, Good, HSG C			
	㖪	77	Weighted Average			
	350		69.12\% Pervious Area			
	730		30.88\% Impervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$			Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity (ft/sec)	$\begin{array}{r} \begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array} \end{array}$	Description
6.0						Direct Entry

Summary for Subcatchment 1G:

Runoff $=8.54$ cfs @ 12.39 hrs, Volume= $\quad 1.110$ af, Depth= 4.19"

Routed to Pond 1GP : SPORTS COMPLEX BASIN
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10-year Rainfall=5.10"

Area	(ac)	N Desc	cription		
$\begin{aligned} & 1 . \\ & 0 . \\ & 0 . \end{aligned}$	850		ment		
	180	92 Weig	2hted Ave	age	
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description
$\begin{array}{r} 26.5 \\ 1.8 \end{array}$	346	0.0050	3.21	2.52	Direct Entry, Artificial Turf Pipe Channel, 12.0" Round Area= 0.8 sf Perim=3.1' r=0.25' $\mathrm{n}=0.013$ Corrugated PE , smooth interior
0.6	116	0.0050	3.21	2.52	Pipe Channel, 12.0" Round Area= 0.8 sf Perim=3.1' r= 0.25^{\prime} $\mathrm{n}=0.013$ Corrugated PE , smooth interior
0.0	11	0.0900	13.61	10.69	Pipe Channel, 12.0" Round Area= 0.8 sf Perim=3.1' $\mathrm{r}=0.25^{\prime}$ $\mathrm{n}=0.013$ Concrete pipe, bends \& connections
0.2	40	0.0050	4.20	7.43	Pipe Channel, 18.0" Round Area= 1.8 sf Perim=4.7' r=0.38' $\mathrm{n}=0.013$ Concrete pipe, bends \& connections
0.1	18	0.0050	4.20	7.43	Pipe Channel, 18.0" Round Area= 1.8 sf Perim=4.7' r=0.38' $\mathrm{n}=0.013$ Concrete pipe, bends \& connections

29.2531 Total

Summary for Subcatchment 1H:

Runoff $=\quad 6.33$ cfs @ 12.08 hrs, Volume= $\quad 0.485$ af, Depth= 4.41"
Routed to Pond 1HP : SPORTS COMPLEX BASIN
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10-year Rainfall=5.10"

Area	(ac)	CN	Description			
1.	000	98	Pavement			
0	090	85	Artificial Turf			
	230	80	>75\% Grass cover, Good, HSG D			
	320	94	Weighted Average			
	320		24.24\% Pervious Area			
	000		75.76\% Impervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$			Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.0						Direct Entry

Summary for Subcatchment 1I:

Runoff $=280.25$ cfs @ 13.39 hrs, Volume $=72.472$ af, Depth= 2.80"
Routed to Pond 1IP : UPSTREAM TACAN
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10-year Rainfall=5.10"

Summary for Subcatchment 1J:

Runoff = 18.11 cfs @ 12.35 hrs, Volume= 2.193 af, Depth= 1.43"
Routed to Pond 1JP : DOWNSTREAM TACAN
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10-year Rainfall=5.10"

22.2660 Total

Summary for Subcatchment 2A:

Runoff = 111.02 cfs @ 13.49 hrs, Volume $=30.344$ af, Depth= 2.36"
Routed to Pond 2AP : FRENCH'S STREAM WEST BRANCH
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10-year Rainfall=5.10"

Summary for Subcatchment 2B:

Runoff = 196.19 cfs @ 12.08 hrs, Volume= 15.019 af, Depth= 4.41"
Routed to Pond 2BP : EXISTING BASIN
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10-year Rainfall=5.10"

Area (ac)	CN	Description			
6.650	98				
26.600	98	Roof			
7.650	74	>75\% Grass cover, Good, HSG C			
40.900	94	Weighted Average			
7.650		18.70\% Pervious Area			
33.250		81.30\% Impervious Area			
Tc Length (min) (feet)		Slope (ft/ft)	Velocity (ft/sec)	$\begin{array}{r} \begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array} \end{array}$	Description
6.0					Direct Entry

Summary for Subcatchment 2C:

Runoff $=52.61$ cfs @ 12.09 hrs, Volume $=3.752$ af, Depth= 2.44
Routed to Pond 2CP : EXISTING PARKWAY BASIN
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10-year Rainfall=5.10"

Area	ac)	CN	Description			
* 8.	840	98	Pavement			
	680	98	Roofs			
	280	39	>75\% Grass cover, Good, HSG A			
	620	74	>75\% Grass cover, Good, HSG C			
	420	74	Weighted Average			
	. 900		42.89\% Pervious Area			
	520		57.11\% Impervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)		Slope (ft/ft)	Velocity (ft/sec)	$\begin{array}{r} \begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array} \end{array}$	Description
6.0						Direct Entry

Summary for Subcatchment 2D:

Runoff $=19.10$ cfs @ 12.35 hrs, Volume= $\quad 2.213$ af, Depth= 2.11"
Routed to Pond 2DP : EXISTING PARKWAY BASIN
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10-year Rainfall=5.10"

Area (ac) CN Description								
* $\begin{array}{r}5.640 \\ 5.310 \\ 1.630\end{array}$		Pavement						
		>75\% Grass cover, Good, HSG A						
		$74>7$	>75\% Grass cover, Good, HSG C					
$\begin{array}{r} 12.580 \\ 6.940 \end{array}$		Weighted Average 55.17\% Pervious Area						
	640				44.8	\% Imper	vious Area	
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
1.6	100	0.0096	1.06		Sheet Flow, Smooth surfaces $n=0.011 \quad \mathrm{P} 2=3.40$ "			
0.2	31	0.0112	2.15		Shallow Concentrated Flow, Paved Kv=20.3 fps			
10.0	162	0.0015	0.27		Shallow Concentrated Flow, Short Grass Pasture Kv= 7.0 fps			
11.3	457	0.0011	0.67		Shallow Concentrated Flow, Paved Kv=20.3 fps			
0.5	43	0.0054	1.49		Shallow Concentrated Flow, Paved Kv= 20.3 fps			
0.3	43	0.1569	2.77		Shallow Concentrated Flow, Short Grass Pasture $\mathrm{Kv}=7.0 \mathrm{fps}$			

23.9836 Total

Summary for Subcatchment 2E:

Runoff $=31.43$ cfs @ 13.29 hrs, Volume= 7.938 af, Depth= 1.57"
Routed to Pond 2EP : FRENCH'S STREAM WEST BRANCH
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10-year Rainfall=5.10"

[^2]
Summary for Subcatchment 2F:

Runoff $=96.20$ cfs @ 13.07 hrs, Volume= 20.811 af, Depth= 2.03"
Routed to Pond 2FP : FRENCH'S STREAM WEST BRANCH
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10-year Rainfall=5.10"

Summary for Subcatchment 2G:

Assumed Tc value
Runoff $=\quad 18.52 \mathrm{cfs} @ 13.47$ hrs, Volume $=\quad 5.337$ af, Depth= 3.87"
Routed to Pond 2AP : FRENCH'S STREAM WEST BRANCH

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10-year Rainfall=5.10"

Summary for Subcatchment 2H:

Assumed Tc value
Runoff $=8.14 \mathrm{cfs}$ @ 13.60 hrs, Volume $=$
Routed to Pond 2AP : FRENCH'S STREAM WEST BRANCH

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10-year Rainfall=5.10"

Area	(ac)	CN	Description			
3.	370	98	Pavement			
1.	690	98	Roof			
	720	61	>75\% Grass cover, Good, HSG B			
	780	82	Weighted Average			
	720		42.37\% Pervious Area			
	060		57.6	3\% Imperv	ious Area	
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$			Slope (ft/ft)	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \\ \hline \end{array}$	Description
120.0						Direct Entry

Summary for Subcatchment 3A:

Runoff $=69.64$ cfs @ 13.04 hrs, Volume= 14.408 af, Depth= 2.80"
Routed to Pond 3AP : FRENCH'S STREAM EAST BRANCH
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10-year Rainfall=5.10"

74.8 1,438 Total

Summary for Subcatchment 3B:

Runoff $=109.34$ cfs @ 13.43 hrs, Volume= $\quad 28.778$ af, Depth= 2.62"
Routed to Pond 3BP : FRENCH'S STREAM EAST BRANCH
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10-year Rainfall=5.10"

Summary for Reach 1R: DP-1 TACAN OUTFALL

```
Inflow Area = 437.470 ac, 35.83% Impervious, Inflow Depth > 2.65" for 10-year event
Inflow = 77.14 cfs @ 15.72 hrs, Volume= 96.456 af
Outflow = 77.14 cfs @ 15.72 hrs, Volume= 96.456 af, Atten= 0%, Lag= 0.0 min
    Routed to Pond 2FP : FRENCH'S STREAM WEST BRANCH
```

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs

Summary for Reach 2R: DP-2 FRENCH'S STREAM WEST BRANCH
Inflow Area $=872.630$ ac, 27.98% Impervious, Inflow Depth $=2.48$ " for 10-year event
Inflow $=293.61$ cfs @ 13.63 hrs, Volume $=180.623 \mathrm{af}$
Outflow = 293.61 cfs @ 13.63 hrs , Volume $=180.623 \mathrm{af}$, Atten= 0%, Lag $=0.0 \mathrm{~min}$
Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs

Summary for Reach 3R: DP-3 FRENCH'S STREAM EAST BRANCH

```
Inflow Area = 193.720 ac, 8.56% Impervious, Inflow Depth = 2.67" for 10-year event
Inflow = 153.44 cfs @ 13.77 hrs, Volume= 43.180 af
Outflow = 153.44 cfs @ 13.77 hrs, Volume= 43.180 af, Atten= 0%, Lag= 0.0 min
```

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs

Summary for Pond 1AP: SPORTS COMPLEX INFILTRATION BASIN

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 171.02' @ 12.11 hrs Surf.Area= 2,201 sf Storage= 2,829 cf
Plug-Flow detention time $=100.4$ min calculated for 0.276 af (100% of inflow)
Center-of-Mass det. time= 100.4 min (882.5-782.1)

Volume	Invert	Avail.Storage	Storage Description
\#1A	168.50'	1,559 cf	24.83'W x 88.64'L x 2.33'H Field A
			5,136 cf Overall - 1,238 cf Embedded = 3,898 cf x 40.0\% Voids
\#2A	169.00'	1,238 cf	ADS_StormTech SC-310 +Capx 84 Inside \#1
			Effective Size $=28.9$ "W x 16.0"H => $2.07 \mathrm{sf} \times 7.12^{\prime} \mathrm{L}=14.7 \mathrm{cf}$
			Overall Size $=34.0$ "W $\times 16.0^{\prime \prime} \mathrm{H} \times 7.56{ }^{\text {'L }}$ with 0.44 ' Overlap
			84 Chambers in 7 Rows
\#3	168.50'	85 cf	4.00'D x 6.80'H CB-Impervious
\#4	175.20'	449 cf	Ponding at CB (Prismatic)Listed below (Recalc)

> 3,332 cf Total Available Storage

Storage Group A created with Chamber Wizard

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
175.20	10	0	0
176.00	300	124	124
176.50	1,000	325	449

Device	Routing	Invert	Outlet Devices
\#1	Primary	170.00'	18.0" Round Culvert
			$\mathrm{L}=13.0{ }^{\prime}$ RCP, end-section conforming to fill, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 170.00' / 169.85' S=0.0115 '/' Cc= 0.900 $\mathrm{n}=0.013$. Flow Area $=1.77 \mathrm{sf}$
\#2	Discarded	168.50'	2.410 in/hr Exfiltration over Surface area Phase-In= 0.01'

Discarded OutFlow Max=0.12 cfs @ $10.44 \mathrm{hrs} \mathrm{HW}=168.58$ ' (Free Discharge) ${ }_{2=\text { Exfiltration (Exfiltration Controls }}$ (0.12 cfs)
L2=Exfiltration (Exfiltration Controls 0.12 cfs)
Primary OutFlow Max=3.37 cfs @ 12.11 hrs HW=170.99' TW=150.88' (Dynamic Tailwater)
L-1=Culvert (Barrel Controls 3.37 cfs @ 3.84 fps)

Pond 1AP: SPORTS COMPLEX INFILTRATION BASIN - Chamber Wizard Field A
Chamber Model = ADS_StormTechSC-310 +Cap (ADS StormTech®SC-310 with cap length)
Effective Size $=28.9$ "W $\times 16.0^{\prime \prime} \mathrm{H}=>2.07 \mathrm{sf} \times 7.12$ 'L $=14.7 \mathrm{cf}$
Overall Size $=34.0$ "W x 16.0"H x $7.56^{\prime} \mathrm{L}$ with 0.44 ' Overlap
34.0" Wide +6.0 " Spacing $=40.0$ " C-C Row Spacing

12 Chambers/Row x 7.12' Long +0.60' Cap Length $x 2=86.64$ ' Row Length $+12.0^{\prime \prime}$ End Stone $\times 2=88.64^{\prime}$ Base Length
7 Rows x 34.0" Wide + 6.0" Spacing x 6 + 12.0" Side Stone x 2 = 24.83' Base Width
6.0" Stone Base + 16.0" Chamber Height $+6.0^{\prime \prime}$ Stone Cover $=2.33$ ' Field Height

84 Chambers $\times 14.7$ cf $=1,238.3$ cf Chamber Storage
5,136.2 cf Field $-1,238.3$ cf Chambers $=3,897.9$ cf Stone $\times 40.0 \%$ Voids $=1,559.1$ cf Stone Storage
Chamber Storage + Stone Storage $=2,797.5 \mathrm{cf}=0.064$ af
Overall Storage Efficiency = 54.5\%
Overall System Size $=88.64^{\prime} \times 24.83$ ' $\times 2.33^{\prime}$
84 Chambers
190.2 cy Field
144.4 cy Stone

Summary for Pond 1BP: SPORTS COMPLEX INFILTRATION BASIN

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 171.25' @ 12.13 hrs Surf.Area= 2,378 sf Storage= 2,975 cf
Plug-Flow detention time $=98.7 \mathrm{~min}$ calculated for 0.306 af (100% of inflow)
Center-of-Mass det. time $=98.7 \mathrm{~min}(884.9-786.2$)

Volume	Invert	Avail.Storage	Storage Description
\#1A	169.00'	1,683 cf	24.83'W x 95.76'L x 2.33'H Field A
			5,549 cf Overall - 1,342 cf Embedded $=4,207$ cf $\times 40.0 \%$ Voids
\#2A	169.50'	1,342 cf	ADS_StormTech SC-310 +Capx 91 Inside \#1
			Effective Size $=28.9$ "W x 16.0"H => $2.07 \mathrm{sf} \times 7.12 \mathrm{~L}=14.7$
			Overall Size $=34.0$ "W x 16.0"H $\times 7.56$ 'L with 0.44 ' Overlap
			91 Chambers in 7 Rows
\#3	169.00'	72 cf	4.00'D x 5.70'H CB-Impervious
\#4	172.70'	572 cf	Ponding at CB (Prismatic)Listed below (Recalc)

> 3,668 cf Total Available Storage

Storage Group A created with Chamber Wizard

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
172.70	10	0	0
173.00	300	47	47
174.50	400	525	572

Device	Routing	Invert	Outlet Devices
\#1	Primary	170.50'	12.0" Round Culvert X 2.00
			$\mathrm{L}=23.0$ ' RCP, end-section conforming to fill, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 170.50' / 170.20' S=0.0130 '/' Cc= 0.900
\#2	Discarded	169.00'	$2.410 \mathrm{in} / \mathrm{hr}$ Exfiltration over Surface area Phase-In= $0.01{ }^{\prime}$

Discarded OutFlow Max=0.13 cfs @ 10.34 hrs HW=169.06' (Free Discharge) ${ }_{2=\text { Exfiltration (Exfiltration Controls }}$ (0.13 cfs)
L2=Exfiltration (Exfiltration Controls 0.13 cfs)
Primary OutFlow Max=3.48 cfs @ 12.13 hrs HW=171.25' TW=150.91' (Dynamic Tailwater)
L-1=Culvert (Barrel Controls 3.48 cfs @ 3.82 fps)

Pond 1BP: SPORTS COMPLEX INFILTRATION BASIN - Chamber Wizard Field A
Chamber Model = ADS_StormTechSC-310 +Cap (ADS StormTech®SC-310 with cap length)
Effective Size $=28.9$ "W x $16.0^{\prime \prime} \mathrm{H}=>2.07 \mathrm{sf} \times 7.12^{\prime} \mathrm{L}=14.7 \mathrm{cf}$
Overall Size $=34.0$ "W x 16.0"H x $7.56^{\prime} \mathrm{L}$ with 0.44 ' Overlap
34.0" Wide $+6.0^{\prime \prime}$ Spacing $=40.0$ " C-C Row Spacing

13 Chambers/Row x 7.12' Long +0.60' Cap Length x $2=93.76$ ' Row Length $+12.0^{\prime \prime}$ End Stone $\times 2=95.76$ ' Base Length
7 Rows x 34.0" Wide + 6.0" Spacing x 6 + 12.0" Side Stone x 2 = 24.83' Base Width
6.0" Stone Base + 16.0" Chamber Height $+6.0^{\prime \prime}$ Stone Cover $=2.33^{\prime}$ Field Height

91 Chambers $\times 14.7$ cf $=1,341.5$ cf Chamber Storage
$5,548.8$ cf Field $-1,341.5$ cf Chambers $=4,207.2$ cf Stone $\times 40.0 \%$ Voids $=1,682.9$ cf Stone Storage
Chamber Storage + Stone Storage $=3,024.4 \mathrm{cf}=0.069$ af
Overall Storage Efficiency $=54.5 \%$
Overall System Size $=95.76^{\prime} \times 24.83^{\prime} \times 2.33^{\prime}$
91 Chambers
205.5 cy Field
155.8 cy Stone

Summary for Pond 1CP: MEMORIAL GROVE AVE. BASIN

Assumed slope of 0.005 for outlet culvert.

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 153.47' @ 13.37 hrs Surf.Area= 66,324 sf Storage= 195,497 cf
Plug-Flow detention time $=156.5 \mathrm{~min}$ calculated for 11.276 af (99% of inflow)
Center-of-Mass det. time $=153.5 \mathrm{~min}(1,010.8-857.3)$

Primary OutFlow Max=26.36 cfs @ 13.37 hrs HW=153.47' TW=145.63' (Dynamic Tailwater)
—1=Culvert (Barrel Controls 26.36 cfs @ 6.63 fps)
Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=150.00' TW=142.50' (Dynamic Tailwater)
L2=Broad-Crested Rectangular Weir(Controls 0.00 cfs)

Summary for Pond 1DP: UPSTREAM DOGLEG

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 146.01' @ 14.26 hrs Surf.Area= 5,943 sf Storage= 4,848 cf
Plug-Flow detention time $=1.8 \mathrm{~min}$ calculated for 15.718 af (100% of inflow)
Center-of-Mass det. time $=1.8 \mathrm{~min}(1,006.7-1,005.0)$

Device Routing Invert Outlet Devices
\#1 Primary 142.60' 42.0" Round Culvert

L= 782.0' RCP, end-section conforming to fill, $\mathrm{Ke}=0.500$ Inlet / Outlet Invert= 142.60' / 142.26' S=0.0004 '/' Cc= 0.900 $n=0.013$, Flow Area $=9.62$ sf
\#2 Secondary
142.50' 42.0" Round Culvert
$\mathrm{L}=782.0^{\prime}$ RCP, end-section conforming to fill, $\mathrm{Ke}=0.500$ Inlet / Outlet Invert= 142.50' / 142.19' S=0.0004 '// Cc=0.900 $\mathrm{n}=0.013$, Flow Area $=9.62 \mathrm{sf}$

Primary OutFlow Max=18.09 cfs @ 13.88 hrs HW=145.95' TW=145.47' (Dynamic Tailwater)
L- $_{1=C u l v e r t ~(O u t l e t ~ C o n t r o l s ~} 18.09$ cfs @ 2.45 fps)
Secondary OutFlow Max=18.73 cfs @ 13.84 hrs HW=145.94' TW=145.45' (Dynamic Tailwater)
L2=Culvert (Outlet Controls 18.73 cfs @ 2.47 fps)

Summary for Pond 1EP: DOWNSTREAM DOGLEG

 Routed to Pond 1IP : UPSTREAM TACAN

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 145.62' @ 14.68 hrs Surf.Area= 3,551 sf Storage= 5,221 cf
Plug-Flow detention time $=3.0 \mathrm{~min}$ calculated for 18.977 af (100% of inflow)
Center-of-Mass det. time $=3.0 \mathrm{~min}$ (975.4 - 972.4)

Primary OutFlow Max=46.86 cfs @ 12.11 hrs HW=144.53' TW=139.94' (Dynamic Tailwater)

Summary for Pond 1FP: EXISTING PARKWAY BASIN

Primary Culvert - Assumed Inverts, pipe diameter, and pipe material.

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 147.16' @ 14.95 hrs Surf.Area= 24,770 sf Storage= 79,920 cf
Plug-Flow detention time $=453.6 \mathrm{~min}$ calculated for 1.234 af (45% of inflow)
Center-of-Mass det. time $=333.7 \mathrm{~min}(1,162.6-828.8)$

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	143.00^{\prime}	197,068 cf	Custom Stage Data (Prismatic)Listed below (Recalc)

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
143.00	10,065	0	0
144.00	17,300	13,683	13,683
145.00	19,605	18,453	32,135
146.00	21,970	20,788	52,923
147.00	24,385	23,178	76,100
148.00	26,860	25,623	101,723
149.00	29,935	28,398	130,120
150.00	31,980	30,958	161,078
151.00	40,000	35,990	197,068

Device Routing Invert Outlet Devices
\#1 Primary 146.50' 24.0" Round Culvert
$\mathrm{L}=98.0^{\prime}$ RCP, end-section conforming to fill, $\mathrm{Ke}=0.500$ Inlet / Outlet Invert= 146.50' / 146.00' S=0.0051 '/' Cc= 0.900 $\mathrm{n}=0.013$ Concrete pipe, bends \& connections, Flow Area= 3.14 sf
\#2 Secondary 150.00 ' 10.0' long x 20.0' breadth Broad-Crested Rectangular Weir Head (feet) $0.20 \quad 0.400 .60 \quad 0.801 .001 .201 .401 .60$ Coef. (English) 2.682 .702 .702 .642 .632 .642 .642 .63

Primary OutFlow Max=1.95 cfs @ 14.95 hrs HW=147.16' TW=144.89' (Dynamic Tailwater)
—1=Culvert (Barrel Controls 1.95 cfs @ 3.25 fps)
Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=143.00' TW=137.80' (Dynamic Tailwater)
$\complement_{2=B r o a d-C r e s t e d ~ R e c t a n g u l a r ~ W e i r(~ C o n t r o l s ~} 0.00$ cfs)

Summary for Pond 1GP: SPORTS COMPLEX BASIN

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 169.36' @ 12.67 hrs Surf.Area= 4,179 sf Storage= 7,713 cf
Plug-Flow detention time= 26.1 min calculated for 1.102 af (99% of inflow)
Center-of-Mass det. time $=21.7 \mathrm{~min}(825.4-803.6)$

Primary OutFlow Max=5.34 cfs @ 12.67 hrs HW=169.36' TW=141.60' (Dynamic Tailwater)
-1=Culvert (Barrel Controls 5.34 cfs @ 6.79 fps)
Secondary OutFlow Max=0.33 cfs @ 12.67 hrs HW=169.36' TW=141.60' (Dynamic Tailwater)
—2=Broad-Crested Rectangular Weir(Weir Controls 0.33 cfs @ 0.64 fps)

Summary for Pond 1HP: SPORTS COMPLEX BASIN

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 164.27' @ 12.17 hrs Surf.Area= 1,803 sf Storage= 1,616 cf
Plug-Flow detention time $=9.8 \mathrm{~min}$ calculated for 0.483 af (100% of inflow)
Center-of-Mass det. time $=6.8 \mathrm{~min}$ (779.7-772.9)

Primary OutFlow Max=4.34 cfs @ 12.17 hrs HW=164.27' TW=140.13' (Dynamic Tailwater)
-1=Culvert (Barrel Controls 4.34 cfs @ 5.52 fps)
Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=161.00' TW=137.80' (Dynamic Tailwater)
$\complement_{2=B r o a d-C r e s t e d ~ R e c t a n g u l a r ~ W e i r(~ C o n t r o l s ~} 0.00 \mathrm{cfs}$)

Summary for Pond 1IP: UPSTREAM TACAN

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 145.05' @ 16.52 hrs Surf.Area= 1,099,064 sf Storage= 1,895,130 cf
Plug-Flow detention time $=273.9$ min calculated for 94.250 af (100% of inflow)
Center-of-Mass det. time $=273.7 \mathrm{~min}(1,203.9-930.2)$

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	137.80^{\prime}	$4,634,030$ cf	Custom Stage Data (Prismatic)Listed below (Recalc)

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
137.80	0	0	0
138.00	42,340	4,234	4,234
139.00	55,626	48,983	53,217
140.00	71,656	63,641	116,858
141.00	96,790	84,223	201,081
142.00	154,769	125,780	326,860
143.00	296,905	225,837	552,697
144.00	600,300	448,603	$1,001,300$
145.00	$1,084,818$	842,559	$1,843,859$
146.00	$1,388,214$	$1,236,516$	$3,080,375$
147.00	$1,719,095$	$1,553,655$	$4,634,030$

Device	Routing	Invert	Outlet Devices
\#1	Primary	137.80'	24.0" Round Culvert
			$\mathrm{L}=30.5$ ' RCP, end-section conforming to fill, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 137.80' / 137.40' S=0.0131 '/' Cc= 0.900
			$\mathrm{n}=0.013$ Concrete pipe, bends \& connections, Flow Area=3.14 sf
\#2	Secondary	137.80'	24.0" Round Culvert
			$\mathrm{L}=30.5$ ' RCP, end-section conforming to fill, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 137.80' / 137.30'S=0.0164 '/' Cc= 0.900
			$\mathrm{n}=0.013$ Concrete pipe, bends \& connections, Flow Area=3.14 sf
\#3	Tertiary	145.50'	30.0' long x 20.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.200 .400 .600 .801 .001 .201 .401 .60
			Coef. (English) 2.682 .702 .702 .642 .632 .642 .642 .63

Primary OutFlow Max=37.81 cfs @ 16.52 hrs HW=145.05' TW=135.92' (Dynamic Tailwater) \&1=Culvert (Inlet Controls 37.81 cfs @ 12.03 fps)

Secondary OutFlow Max=37.81 cfs @ 16.52 hrs HW=145.05' TW=135.92' (Dynamic Tailwater) ${ }^{-2} \mathbf{2 = C u l v e r t}$ (Inlet Controls 37.81 cfs @ 12.03 fps)

Tertiary OutFlow Max=0.00 cfs @ $0.00 \mathrm{hrs} \mathrm{HW}=137.80^{\prime}$ TW=133.50' (Dynamic Tailwater)
$\complement_{3=B r o a d-C r e s t e d ~ R e c t a n g u l a r ~ W e i r ~(~ C o n t r o l s ~} 0.00 \mathrm{cfs}$)

Summary for Pond 1JP: DOWNSTREAM TACAN

 Routed to Reach 1R: DP-1 TACAN OUTFALL

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 135.93' @ 15.72 hrs Surf.Area= 1,421 sf Storage= 1,724 cf
Plug-Flow detention time $=0.4 \mathrm{~min}$ calculated for 96.443 af (100% of inflow)
Center-of-Mass det. time $=0.4 \mathrm{~min}(1,197.1-1,196.7)$

Volume	Invert Avail.Storage Storage Description		
\#1	133.50'	98,669 cf Custo	tage Data (Prismatic)Listed below (Recalc)
$\begin{array}{r} \text { Elevation } \\ \quad \text { feet) } \end{array}$	$\begin{array}{r} \text { Surf.Area } \\ (\mathrm{sq}-\mathrm{ft}) \\ \hline \end{array}$	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
133.50	0	0	0
136.00	1,465	1,831	1,831
137.00	5,100	3,283	5,114
138.00	6,735	5,918	11,031
139.00	8,330	7,533	18,564
140.00	9,930	9,130	27,694
141.00	11,565	10,748	38,441
142.00	13,220	12,393	50,834
143.00	15,005	14,113	64,946
144.00	16,830	15,918	80,864
145.00	18,780	17,805	98,669

Device	Routing	Invert	Outlet Devices
$\# 1$	Primary	133.50^{\prime}	$\mathbf{6 0 . 0}$ " Round Culvert X 2.00

L= 899.0' RCP, end-section conforming to fill, $\mathrm{Ke}=0.500$ Inlet / Outlet Invert= 133.50' / 130.80' S=0.0030 '/' Cc= 0.900 $\mathrm{n}=0.013$ Concrete pipe, bends \& connections, Flow Area= 19.63 sf

Primary OutFlow Max=77.14 cfs @ 15.72 hrs HW=135.93' TW=0.00' (Dynamic Tailwater)
—1=Culvert (Barrel Controls 77.14 cfs @ 5.97 fps)

Summary for Pond 2AP: FRENCH'S STREAM WEST BRANCH

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	141.70^{\prime}	$1,815,201 \mathrm{cf}$	Custom Stage Data (Prismatic)Listed below (Recalc)

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
141.70	0	0	0
144.00	6,640	7,636	7,636
145.00	57,230	31,935	39,571
146.00	117,540	87,385	126,956
147.00	216,860	167,200	294,156
148.00	359,360	288,110	582,266
149.00	640,140	499,750	$1,082,016$
150.00	826,230	733,185	$1,815,201$

Device	Routing	Invert	Outlet Devices
\#1	Primary	141.70'	48.0" Round Culvert
			$\mathrm{L}=126.0$ ' RCP, end-section conforming to fill, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 141.70' / 141.60' S=0.0008'/l' Cc=0.900 $\mathrm{n}=0.013$, Flow Area= 12.57 sf
\#2	Secondary	141.70'	48.0" Round Culvert
			$\mathrm{L}=126.0^{\prime} \mathrm{RCP}$, end-section conforming to fill, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 141.70' / 141.50' S=0.0016 '/' Cc= 0.900
			$\mathrm{n}=0.013$, Flow Area= 12.57 sf

Primary OutFlow Max=69.87 cfs @ 13.98 hrs HW=146.13' TW=143.46' (Dynamic Tailwater)
L-1=Culvert (Barrel Controls 69.87 cfs @ 6.27 fps)
Secondary OutFlow Max=72.70 cfs @ 13.98 hrs HW=146.13' TW=143.46' (Dynamic Tailwater)
—2=Culvert (Barrel Controls 72.70 cfs @ 6.52 fps)

Summary for Pond 2BP: EXISTING BASIN

Routed to Pond 2AP : FRENCH'S STREAM WEST BRANCH
Secondary = $\quad 0.00$ cfs @ 0.00 hrs, Volume= 0.000 af Routed to Pond 2AP : FRENCH'S STREAM WEST BRANCH

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 149.13' @ 12.56 hrs Surf.Area= 81,286 sf Storage $=266,655$ cf
Plug-Flow detention time $=125.7$ min calculated for 14.696 af (98% of inflow)
Center-of-Mass det. time= 112.3 min (885.2-772.9)

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	143.00	482,855 cf	Custom Stage Data (Prismatic)Listed below (Recalc)

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
143.00	10,920	0	0
144.00	16,580	13,750	13,750
145.00	28,700	22,640	36,390
146.00	39,560	34,130	70,520
147.00	53,515	46,538	117,058
148.00	71,930	62,723	179,780
149.00	80,230	76,080	255,860
150.00	88,130	84,180	340,040
151.00	95,000	91,565	431,605
151.50	110,000	51,250	482,855

Device	Routing	Invert	Outlet Devices
\#1	Primary	144.00'	24.0" Round Culvert
			$\mathrm{L}=79.0{ }^{\prime}$ RCP, end-section conforming to fill, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 144.00' / 143.21' S= 0.0100 '/' Cc= 0.900 $\mathrm{n}=0.013$. Flow Area $=3.14 \mathrm{sf}$
\#2	Secondary	150.00'	10.0' long x 20.0 ' breadth Broad-Crested Rectangular Weir Head (feet) $0.20 \quad 0.400 .60 \quad 0.801 .001 .201 .401 .60$
			Coef. (English) 2.682 .702 .702 .642 .632 .642 .642 .63

Primary OutFlow Max=30.75 cfs @ 12.56 hrs HW=149.13' TW=144.44' (Dynamic Tailwater)
—1=Culvert (Inlet Controls 30.75 cfs @ 9.79 fps)
Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=143.00' TW=141.70' (Dynamic Tailwater)
$\complement_{2=B r o a d-C r e s t e d ~ R e c t a n g u l a r ~ W e i r(~ C o n t r o l s ~} 0.00$ cfs)

Summary for Pond 2CP: EXISTING PARKWAY BASIN

Existing basin information taken from Weymouth Patriot Parkway Utility As-Builts, prepared by LM Heavy Civil Construction LLC, dated October 15, 2018.

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
138.00	730	0	0
139.00	1,695	1,213	1,213
140.00	3,150	2,423	3,635
141.00	6,840	4,995	8,630
142.00	12,885	9,863	18,493
143.00	17,405	15,145	33,638
144.00	21,190	19,298	52,935
145.00	24,465	22,828	75,763
146.00	27,780	26,123	101,885
147.00	31,160	29,470	131,355
148.00	34,590	32,875	164,230
149.00	38,295	36,443	200,673
150.00	42,170	40,233	240,905

Device	Routing	Invert	Outlet Devices
\#1	Primary	142.30'	30.0" Round Culvert
			$\mathrm{L}=65.0^{\prime}$ RCP, end-section conforming to fill, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 142.30' / 141.50' S=0.0123 '// Cc= 0.900 $\mathrm{n}=0.013$, Flow Area= 4.91 sf
\#2	Device 1	146.00'	24.0" $\times 24.0$ " Horiz. Orifice/Grate $\mathrm{C}=0.600$
			Limited to weir flow at low heads

Primary OutFlow Max=3.17 cfs @ 14.47 hrs HW=146.25' TW=143.44' (Dynamic Tailwater)
$L_{1=C u l v e r t ~(P a s s e s ~}^{3.17}$ cfs of 38.80 cfs potential flow)

Summary for Pond 2DP: EXISTING PARKWAY BASIN

Existing basin information taken from Weymouth Patriot Parkway Utility As-Builts, prepared by LM Heavy Civil Construction LLC, dated October 15, 2018.

Inflow Area =	12.580 ac, 44.83% Impervious, Inflow Depth = 2.11" for 10-year event			
Inflow	19.10 cfs @	12.35 hrs , Volume=	2.213 af	
Outflow	7.10 cfs @	12.85 hrs , Volume=	1.344 af ,	63\%,
Primary	7.10 cfs @	12.85 hrs , Volume=	1.344 af	

Routed to Pond 2EP : FRENCH'S STREAM WEST BRANCH
Secondary $=\quad 0.00$ cfs @ 0.00 hrs, Volume $=\quad 0.000$ af Routed to Pond 2EP : FRENCH'S STREAM WEST BRANCH

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 146.62' @ 12.85 hrs Surf.Area= 11,206 sf Storage= $42,395 \mathrm{cf}$
Plug-Flow detention time= 216.1 min calculated for 1.344 af (61% of inflow)
Center-of-Mass det. time= 102.0 min (965.2-863.2)

Primary OutFlow Max=7.10 cfs @ 12.85 hrs HW=146.62' TW=141.72' (Dynamic Tailwater) -1=Culvert (Passes 7.10 cfs of 27.56 cfs potential flow)
$\mathcal{L}_{2}=\mathbf{O r i f i c e} /$ Grate (Weir Controls $7.10 \mathrm{cfs} @ 2.12 \mathrm{fps}$)
Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=139.00' TW=138.00' (Dynamic Tailwater)
$\complement_{3=\text { Broad-Crested Rectangular Weir (Controls } 0.00 \text { cfs) }}$

Summary for Pond 2EP: FRENCH'S STREAM WEST BRANCH

Per site visit outlet consists of one 60-inch culvert.

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
138.00	0	0	0
140.00	9,600	9,600	9,600
141.00	13,135	11,368	20,968
142.00	35,665	24,400	45,368
143.00	47,280	41,473	86,840
144.00	58,400	52,840	139,680
145.00	71,585	64,993	204,673
146.00	85,230	78,408	283,080
147.00	106,515	95,873	378,953
148.00	183,900	145,208	524,160

Device Routing Invert Outlet Devices
\#1 Primary 138.00' 60.0" Round Culvert
$\mathrm{L}=380.0^{\prime}$ RCP, end-section conforming to fill, $\mathrm{Ke}=0.500$
Inlet / Outlet Invert= 138.00' / 135.70' S=0.0061 '/' Cc= 0.900 $\mathrm{n}=0.013$ Concrete pipe, bends \& connections, Flow Area= 19.63 sf

Primary OutFlow Max=164.11 cfs @ 14.21 hrs HW=143.51' TW=131.69' (Dynamic Tailwater)
L-1=Culvert (Inlet Controls 164.11 cfs @ 8.36 fps)

Summary for Pond 2FP: FRENCH'S STREAM WEST BRANCH

Inflow Area =	872.630 ac	27.98\% Impervious, In	Inflow Depth $=2$.	for 10-year event
Inflow	296.18 cfs @	13.42 hrs, Volume=	- 180.659 af	
Outflow	293.61 cfs @	13.63 hrs , Volume=	- 180.623 af , A	Atten $=1 \%, L a g=12.9 \mathrm{~min}$
Primary	119.47 cfs @	13.63 hrs , Volume=	59.794 af	
Routed to	Reach 2R : DP-2	FRENCH'S STREAM	WEST BRANCH	
Secondary =	174.14 cfs @	13.63 hrs , Volume=	120.829 af	
Routed to	Reach 2R : DP-2	FRENCH'S STREAM	WEST BRANCH	
Tertiary =	0.00 cfs @	0.00 hrs , Volume=	0.000 af	
Routed to	each 2R : DP-2	FRENCH'S STREAM	W WEST BRANCH	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 131.81' @ 13.63 hrs Surf.Area= 49,819 sf Storage= 85,540 cf
Plug-Flow detention time $=5.2 \mathrm{~min}$ calculated for 180.623 af (100% of inflow)
Center-of-Mass det. time $=4.6 \mathrm{~min}(1,078.8-1,074.2)$

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	125.90^{\prime}	665,278 cf	Custom Stage Data (Prismatic)Listed below (Recalc)

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
125.90	0	0	0
130.00	17,650	36,182	36,182
131.00	22,340	19,995	56,177
132.00	56,105	39,223	95,400
133.00	76,835	66,470	161,870
134.00	93,610	85,223	247,092
135.00	111,175	102,393	349,485
136.00	153,700	132,438	481,922
137.00	213,010	183,355	665,278

Device	Routing	Invert	Outlet Devices
\#1	Primary	127.60'	60.0" Round Culvert
			$\mathrm{L}=34.0$ ' RCP, end-section conforming to fill, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 126.60' / 127.60' S=-0.0294 '/' Cc= 0.900 $\mathrm{n}=0.013$, Flow Area= 19.63 sf
\#2	Secondary	126.70'	72.0" Round Culvert
			$\mathrm{L}=34.0$ ' RCP, end-section conforming to fill, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 125.90' / 126.70' S=-0.0235 '/' Cc= 0.900 $\mathrm{n}=0.013$, Flow Area $=28.27 \mathrm{sf}$
\#3	Tertiary	135.50'	10.0' long x 20.0' breadth Spillway over Path
			Head (feet) 0.200 .400 .600 .801 .001 .201 .401 .60
			Coef. (English) 2.682 .702 .702 .642 .632 .642 .642 .63

Primary OutFlow Max=119.47 cfs @ 13.63 hrs HW=131.81' TW=0.00' (Dynamic Tailwater) L-1=Culvert (Barrel Controls 119.47 cfs @ 7.25 fps)

Secondary OutFlow Max=174.14 cfs @ 13.63 hrs HW=131.81' TW=0.00' (Dynamic Tailwater)
_2=Culvert (Barrel Controls 174.14 cfs @ 7.77 fps)
Tertiary OutFlow Max=0.00 cfs @ $0.00 \mathrm{hrs} \mathrm{HW}=125.90^{\prime}$ TW=0.00' (Dynamic Tailwater)
$\left\llcorner_{3=S p i l l w a y ~ o v e r ~ P a t h ~(~ C o n t r o l s ~} 0.00 \mathrm{cfs}\right.$)

Summary for Pond 3AP: FRENCH'S STREAM EAST BRANCH

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 146.83' @ 13.30 hrs Surf.Area= 28,525 sf Storage= $31,582 \mathrm{cf}$
Plug-Flow detention time $=5.1 \mathrm{~min}$ calculated for 14.402 af (100% of inflow)
Center-of-Mass det. time $=4.6 \mathrm{~min}$ (894.7-890.1)

Summary for Pond 3BP: FRENCH'S STREAM EAST BRANCH

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 135.16' @ 13.77 hrs Surf.Area= 58,726 sf Storage $=164,766$ cf
Plug-Flow detention time= 12.1 min calculated for 43.174 af (100% of inflow)
Center-of-Mass det. time= $12.1 \mathrm{~min}(927.1$-914.9)

Summary for Subcatchment 1A:

Runoff $=\quad 4.56$ cfs @ 12.08 hrs, Volume= 0.347 af, Depth= 5.27"
Routed to Pond 1AP : SPORTS COMPLEX INFILTRATION BASIN
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 25-year Rainfall=6.20"

Summary for Subcatchment 1B:

Runoff $=\quad 5.13$ cfs @ 12.08 hrs, Volume= $\quad 0.386$ af, Depth= 5.15"
Routed to Pond 1BP : SPORTS COMPLEX INFILTRATION BASIN
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 25-year Rainfall=6.20"

Summary for Subcatchment 1C:

Assumed pipe channel has slope 0.005 since no data given
Runoff $=97.47$ cfs @ 12.61 hrs, Volume $=\quad 14.847$ af, Depth= 3.86

Routed to Pond 1CP : MEMORIAL GROVE AVE. BASIN
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 25 -year Rainfall $=6.20$ "

Area	ac) C	N Desc	ription		
16.950					
2.060		PavementRoofs			
0.750		100 Ope	Open Water		
0.690		30 Wo	Voods, Good, HSG A		
	980	Woods, Good, HSG C			
	380	77 Wood	Woods, Good, HSG D		
	150	30 Brus	Brush, Good, HSG A		
	810	$39>75$	75% Grass cover, Good, HSG A		
	130	74 >75	75\% Grass cover, Good, HSG C		
	270	$80>75$	75\% Grass cover, Good, HSG D		
46.170		79 Weig	Veighted Average		
26.410		57.20\% Pervious Area			
19.760		42.80\% Impervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	$\begin{array}{r} \text { Length } \\ \text { (feet) } \\ \hline \end{array}$	$\begin{array}{r} \text { Slope } \\ (\mathrm{ft} / \mathrm{ft}) \end{array}$	Velocity (ft/sec)	Capacity (cfs)	Description
23.4	100	0.0021	0.07		Sheet Flow, Grass: Short n=0.150 P2=3.40"
4.4	94	0.0026	0.36		Shallow Concentrated Flow,
					Short Grass Pasture Kv= 7.0 fps
7.7	252	0.0061	0.55		Shallow Concentrated Flow,
					Short Grass Pasture Kv= 7.0 fps
0.1	14	0.0701	1.85		Shallow Concentrated Flow,
					Short Grass Pasture Kv= 7.0 fps
2.9	154	0.0155	0.87		Shallow Concentrated Flow,
					Short Grass Pasture Kv= 7.0 fps
1.4	438	0.0050	5.09	16.00	Pipe Channel,
					24.0" Round Area= 3.1 sf Perim=6.3' r=0.50' $\mathrm{n}=0.013$ Concrete pipe, bends \& connections
0.8	288	0.0050	5.91	29.00	Pipe Channel,
					30.0" Round Area= 4.9 sf Perim= 7.9' r= 0.63' $\mathrm{n}=0.013$ Concrete pipe, bends \& connections
0.7	295	0.0050	6.67	47.16	Pipe Channel,
					36.0" Round Area= 7.1 sf Perim= 9.4' r= 0.75^{\prime} $\mathrm{n}=0.013$ Concrete pipe, bends \& connections
2.9	1,299	0.0050	7.39	71.14	Pipe Channel,
					42.0" Round Area= 9.6 sf Perim= 11.0' $\mathrm{r}=0.88{ }^{\prime}$
					$\mathrm{n}=0.013$ Concrete pipe, bends \& connections
0.2	93	0.0050	8.08	101.57	Pipe Channel, 48.0" Round Area= 12.6 sf Perim= 12.6' r= 1.00'

$\mathrm{n}=0.013$ Concrete pipe, bends \& connections
$44.53,027$ Total

Summary for Subcatchment 1D:

Runoff = 19.29 cfs @ 13.92 hrs, Volume= 6.493 af, Depth= 2.41"
Routed to Pond 1DP : UPSTREAM DOGLEG
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 25-year Rainfall=6.20"

[^3]
Summary for Subcatchment 1E:

Runoff = 58.27 cfs @ 12.09 hrs, Volume= 4.229 af, Depth= 4.49"
Routed to Pond 1EP : DOWNSTREAM DOGLEG
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 25-year Rainfall=6.20"

Summary for Subcatchment 1F:

Runoff $=51.74$ cfs @ 12.09 hrs, Volume $=3.679$ af, Depth= $3.65{ }^{\prime \prime}$
Routed to Pond 1FP : EXISTING PARKWAY BASIN
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 25-year Rainfall=6.20"

Summary for Subcatchment 1G:

Runoff $=10.61$ cfs @ 12.37 hrs, Volume= 1.396 af, Depth= 5.27"
Routed to Pond 1GP : SPORTS COMPLEX BASIN
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 25-year Rainfall=6.20"

Area	(ac)	N Desc	cription		
$\begin{aligned} & 1 . \\ & 0 . \\ & 0 . \end{aligned}$	850		ment		
	180	92 Weig	2hted Ave	age	
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description
$\begin{array}{r} 26.5 \\ 1.8 \end{array}$	346	0.0050	3.21	2.52	Direct Entry, Artificial Turf Pipe Channel, 12.0" Round Area= 0.8 sf Perim=3.1' r=0.25' $\mathrm{n}=0.013$ Corrugated PE , smooth interior
0.6	116	0.0050	3.21	2.52	Pipe Channel, 12.0" Round Area= 0.8 sf Perim=3.1' r= 0.25^{\prime} $\mathrm{n}=0.013$ Corrugated PE , smooth interior
0.0	11	0.0900	13.61	10.69	Pipe Channel, 12.0" Round Area= 0.8 sf Perim=3.1' $\mathrm{r}=0.25^{\prime}$ $\mathrm{n}=0.013$ Concrete pipe, bends \& connections
0.2	40	0.0050	4.20	7.43	Pipe Channel, 18.0" Round Area= 1.8 sf Perim=4.7' r=0.38' $\mathrm{n}=0.013$ Concrete pipe, bends \& connections
0.1	18	0.0050	4.20	7.43	Pipe Channel, 18.0" Round Area= 1.8 sf Perim=4.7' r=0.38' $\mathrm{n}=0.013$ Concrete pipe, bends \& connections

Summary for Subcatchment 1H:

Runoff = 7.80 cfs @ 12.08 hrs, Volume= 0.604 af, Depth= 5.49"
Routed to Pond 1HP : SPORTS COMPLEX BASIN
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 25-year Rainfall=6.20"

Area	ac)	CN	Description			
	, 000	98	Pavement			
	090	85	Artificial Turf			
	230	80	>75\% Grass cover, Good, HSG D			
	320	94	Weighted Average			
	320		24.24\% Pervious Area			
	. 000		75.76\% Impervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$			Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.0						Direct Entry

Summary for Subcatchment 1I:

Runoff = 377.40 cfs @ 13.39 hrs, Volume= 97.331 af, Depth= 3.76"
Routed to Pond 1IP : UPSTREAM TACAN
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 25-year Rainfall=6.20"

Summary for Subcatchment 1J:

Runoff $=28.41$ cfs @ 12.33 hrs, Volume= 3.284 af, Depth= 2.14"
Routed to Pond 1JP : DOWNSTREAM TACAN
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 25-year Rainfall=6.20"

Area (ac) CN Description					
* 3.780		98 Pav	Pavement		
12.310		48 Brus	Brush, Good, HSG B		
2.320		73 Br			
18.410		1 Weighted Average			
	630	79.4	\% Pervio	us Area	
	780	20.5	\% Imper	ious Area	
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
11.7	100	0.0120	0.14		Sheet Flow, Grass: Short $n=0.150 \quad P 2=3.40 "$
10.5	560	0.0160	0.89		Shallow Concentrated Flow, Short Grass Pasture Kv=7.0 fps

22.2660 Total

Summary for Subcatchment 2A:

Runoff = 154.99 cfs @ 13.49 hrs, Volume= 41.871 af, Depth= 3.26"
Routed to Pond 2AP : FRENCH'S STREAM WEST BRANCH
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 25-year Rainfall=6.20"

Summary for Subcatchment 2B:

Runoff $=241.61$ cfs @ 12.08 hrs, Volume=
Routed to Pond 2BP : EXISTING BASIN
18.728 af, Depth= 5.49"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 25-year Rainfall=6.20"

Area (ac)	CN	Description			
6.650	98	Pavement			
26.600	98	Roof			
7.650	74	>75\% Grass cover, Good, HSG C			
40.900	94	Weighted Average			
7.650		18.70\% Pervious Area			
33.250		81.30\% Impervious Area			
Tc Length (min) (feet)		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.0					Direct Entry

Summary for Subcatchment 2C:

Runoff $=72.47$ cfs @ 12.09 hrs, Volume= $\quad 5.148$ af, Depth= 3.35"
Routed to Pond 2CP : EXISTING PARKWAY BASIN
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 25-year Rainfall=6.20"

Area	(ac)	CN	Description			
8	840	98	Pavement			
1	680	98	Roofs			
	280	39	>75\% Grass cover, Good, HSG A			
	620	74	>75\% Grass cover, Good, HSG C			
	420	74	Weighted Average			
	900		42.89\% Pervious Area			
	520		57.11\% Impervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)		Slope (ft/ft)	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \\ \hline \end{array}$	Description
6.0						Direct Entry

Summary for Subcatchment 2D:

Runoff $=27.18 \mathrm{cfs} @ 12.35 \mathrm{hrs}$, Volume=
Routed to Pond 2DP : EXISTING PARKWAY BASIN
3.108 af, Depth= 2.96 "

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 25 -year Rainfall=6.20"

Area (ac) CN Description								
* $\begin{array}{r}5.640 \\ 5.310 \\ 1.630\end{array}$		Pavement						
		>75\% Grass cover, Good, HSG A						
		$74>7$	>75\% Grass cover, Good, HSG C					
$\begin{array}{r} 12.580 \\ 6.940 \end{array}$		Weighted Average 55.17\% Pervious Area						
	640				44.8	\% Imper	vious Area	
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
1.6	100	0.0096	1.06		Sheet Flow, Smooth surfaces $n=0.011 \quad \mathrm{P} 2=3.40$ "			
0.2	31	0.0112	2.15		Shallow Concentrated Flow, Paved Kv=20.3 fps			
10.0	162	0.0015	0.27		Shallow Concentrated Flow, Short Grass Pasture Kv= 7.0 fps			
11.3	457	0.0011	0.67		Shallow Concentrated Flow, Paved Kv=20.3 fps			
0.5	43	0.0054	1.49		Shallow Concentrated Flow, Paved Kv= 20.3 fps			
0.3	43	0.1569	2.77		Shallow Concentrated Flow, Short Grass Pasture $\mathrm{Kv}=7.0 \mathrm{fps}$			

23.9836 Total

Summary for Subcatchment 2E:

Runoff $=48.10$ cfs @ 13.28 hrs, Volume= 11.696 af, Depth= 2.32"
Routed to Pond 2EP : FRENCH'S STREAM WEST BRANCH
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 25-year Rainfall=6.20"

[^4]
Summary for Subcatchment 2F:

Runoff $=138.40$ cfs @ 13.07 hrs, Volume $=29.413$ af, Depth= 2.87"
Routed to Pond 2FP : FRENCH'S STREAM WEST BRANCH
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 25-year Rainfall=6.20"

Summary for Subcatchment 2G:

Assumed Tc value
Runoff $=23.43$ cfs @ 13.47 hrs, Volume $=\quad 6.803$ af, Depth= 4.93"
Routed to Pond 2AP : FRENCH'S STREAM WEST BRANCH

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 25 -year Rainfall $=6.20$

Summary for Subcatchment 2H:

Assumed Tc value
Runoff $=\quad 10.69 \mathrm{cfs} @ 13.60 \mathrm{hrs}$, Volume $=$
Routed to Pond 2AP:FRENCH'S STREAM WEST BRANCH

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 25 -year Rainfall $=6.20$ "

Summary for Subcatchment 3A:

Runoff $=93.55$ cfs @ 13.04 hrs, Volume= $\quad 19.350$ af, Depth= 3.76"
Routed to Pond 3AP : FRENCH'S STREAM EAST BRANCH
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 25-year Rainfall=6.20"

74.8 1,438 Total

Summary for Subcatchment 3B:

Runoff = 149.28 cfs @ 13.43 hrs, Volume= $\quad 39.057$ af, Depth= 3.55"
Routed to Pond 3BP : FRENCH'S STREAM EAST BRANCH
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 25-year Rainfall=6.20"

Summary for Reach 1R: DP-1 TACAN OUTFALL

```
Inflow Area = 437.470 ac, 35.83% Impervious, Inflow Depth > 3.58" for 25-year event
Inflow = 95.85 cfs @ 16.66 hrs, Volume= 130.641 af
Outflow = 95.85 cfs @ 16.66 hrs, Volume= 130.641 af, Atten= 0%, Lag= 0.0 min
    Routed to Pond 2FP : FRENCH'S STREAM WEST BRANCH
Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
```

Summary for Reach 2R: DP-2 FRENCH'S STREAM WEST BRANCH
Inflow Area $=872.630$ ac, 27.98% Impervious, Inflow Depth $=3.40$ " for 25-year event
Inflow $=363.68$ cfs @ 13.54 hrs, Volume $=246.895 \mathrm{af}$
Outflow $=363.68$ cfs @ 13.54 hrs , Volume $=246.895 \mathrm{af}$, Atten $=0 \%$, Lag $=0.0 \mathrm{~min}$
Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs

Summary for Reach 3R: DP-3 FRENCH'S STREAM EAST BRANCH

```
Inflow Area = 193.720 ac, 8.56% Impervious, Inflow Depth = 3.62" for 25-year event
Inflow = 222.14 cfs @ 13.58 hrs, Volume= 58.401 af
Outflow = 222.14 cfs @ 13.58 hrs, Volume= 58.401 af, Atten= 0%, Lag= 0.0 min
```

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs

Summary for Pond 1AP: SPORTS COMPLEX INFILTRATION BASIN

Inflow Area =	0.790 ac,	89.87\% Impervious,	Inflow Depth = 5.27"	" for 25-year event
Inflow	4.56 cfs @	12.08 hrs , Volume=	- 0.347 af	
Outflow	5.02 cfs @	12.07 hrs , Volume=	- $0.347 \mathrm{af}, \mathrm{At}$	Atten= 0\%, Lag= 0.0 min
Discarded =	0.12 cfs @	9.74 hrs , Volume=	- 0.186 af	
Primary	4.89 cfs @	12.07 hrs , Volume=	- 0.161 af	
Routed to	1CP : MEM	MORIAL GROVE AVE.	BASIN	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 171.26' @ 12.07 hrs Surf.Area= 2,201 sf Storage= 2,832 cf
Plug-Flow detention time $=91.8 \mathrm{~min}$ calculated for 0.347 af (100% of inflow)
Center-of-Mass det. time $=91.8 \min (867.9-776.2)$

Volume	Invert	Avail.Storage	Storage Description
\#1A	168.50'	1,559 cf	24.83'W x 88.64'L x 2.33'H Field A
			5,136 cf Overall - 1,238 cf Embedded = 3,898 cf x 40.0\% Voids
\#2A	169.00'	1,238 cf	ADS_StormTech SC-310 +Capx 84 Inside \#1
			Effective Size $=28.9$ "W x 16.0"H => $2.07 \mathrm{sf} \times 7.12 \mathrm{~L}=14.7$
			Overall Size $=34.0$ " $\mathrm{W} \times 16.0$ 'H x 7.56'L with $0.44{ }^{\prime}$ ' Overlap
			84 Chambers in 7 Rows
\#3	168.50'	85 cf	4.00 'D x 6.80'H CB-Impervious
\#4	175.20'	449 cf	Ponding at CB (Prismatic)Listed below (Recalc)

> 3,332 cf Total Available Storage

Storage Group A created with Chamber Wizard

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
175.20	10	0	0
176.00	300	124	124
176.50	1,000	325	449

Device	Routing	Invert	Outlet Devices
\#1	Primary	170.00'	18.0" Round Culvert
			$\mathrm{L}=13.0$ ' RCP, end-section conforming to fill, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 170.00' / 169.85' S=0.0115 '/' Cc= 0.900 $\mathrm{n}=0.013$. Flow Area $=1.77 \mathrm{sf}$
\#2	Discarded	168.50'	2.410 in/hr Exfiltration over Surface area Phase-In= $0.01{ }^{\prime}$

Discarded OutFlow Max=0.12 cfs @ 9.74 hrs HW=168.58' (Free Discharge)
L2=Exfiltration (Exfiltration Controls 0.12 cfs)
Primary OutFlow Max=4.79 cfs @ 12.07 hrs HW=171.24' TW=151.22' (Dynamic Tailwater)
——1=Culvert (Barrel Controls 4.79 cfs @ 4.17 fps)

Pond 1AP: SPORTS COMPLEX INFILTRATION BASIN - Chamber Wizard Field A
Chamber Model = ADS_StormTechSC-310 +Cap (ADS StormTech®SC-310 with cap length)
Effective Size $=28.9$ "W x $16.0^{\prime \prime} \mathrm{H}=>2.07 \mathrm{sf} \times 7.12^{\prime} \mathrm{L}=14.7 \mathrm{cf}$
Overall Size $=34.0$ "W x 16.0"H x $7.56^{\prime} \mathrm{L}$ with 0.44 ' Overlap
34.0" Wide +6.0 " Spacing $=40.0$ " C-C Row Spacing

12 Chambers/Row x 7.12' Long +0.60' Cap Length $x 2=86.64$ ' Row Length $+12.0^{\prime \prime}$ End Stone $\times 2=88.64{ }^{\prime}$ Base Length
7 Rows x 34.0" Wide + 6.0" Spacing x $6+12.0$ " Side Stone x 2 = 24.83' Base Width
6.0" Stone Base + 16.0" Chamber Height $+6.0^{\prime \prime}$ Stone Cover $=2.33^{\prime}$ Field Height

84 Chambers $\times 14.7$ cf $=1,238.3$ cf Chamber Storage
5,136.2 cf Field - 1,238.3 cf Chambers $=3,897.9$ cf Stone $\times 40.0 \%$ Voids $=1,559.1$ cf Stone Storage
Chamber Storage + Stone Storage $=2,797.5 \mathrm{cf}=0.064$ af
Overall Storage Efficiency = 54.5\%
Overall System Size $=88.64^{\prime} \times 24.83^{\prime} \times 2.33^{\prime}$
84 Chambers
190.2 cy Field
144.4 cy Stone

Summary for Pond 1BP: SPORTS COMPLEX INFILTRATION BASIN

Inflow Area =	0.900 ac ,	88.89\% Impervious, In	Inflow Depth = 5.15"	" for 25-year event
Inflow	5.13 cfs @	12.08 hrs , Volume=	- 0.386 af	
Outflow	5.49 cfs @	12.08 hrs , Volume=	- $0.386 \mathrm{af}, \mathrm{At}$	Atten= 0\%, Lag= 0.0 min
Discarded =	0.13 cfs @	9.62 hrs , Volume=	- 0.202 af	
Primary	5.36 cfs @	12.08 hrs , Volume=	- 0.185 af	
Routed to	1CP : MEM	ORIAL GROVE AVE.	BASIN	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 171.52' @ 12.08 hrs Surf.Area= 2,378 sf Storage= 3,056 cf
Plug-Flow detention time $=89.9 \mathrm{~min}$ calculated for 0.386 af (100% of inflow)
Center-of-Mass det. time= $89.9 \min (869.9-780.0)$

Volume	Invert	Avail.Storage	Storage Description
\#1A	169.00'	1,683 cf	24.83'W x 95.76'L x 2.33'H Field A
			5,549 cf Overall - 1,342 cf Embedded $=4,207$ cf $\times 40.0 \%$ Voids
\#2A	169.50'	1,342 cf	ADS_StormTech SC-310 +Capx 91 Inside \#1
			Effective Size $=28.9$ "W x 16.0"H => $2.07 \mathrm{sf} \times 7.12 \mathrm{~L}=14.7$
			Overall Size $=34.0$ "W x 16.0"H $\times 7.56$ 'L with 0.44 ' Overlap
			91 Chambers in 7 Rows
\#3	169.00'	72 cf	4.00'D x 5.70'H CB-Impervious
\#4	172.70'	572 cf	Ponding at CB (Prismatic)Listed below (Recalc)

> 3,668 cf Total Available Storage

Storage Group A created with Chamber Wizard

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
172.70	10	0	0
173.00	300	47	47
174.50	400	525	572

Device	Routing	Invert	Outlet Devices
\#1	Primary	170.50'	12.0" Round Culvert X 2.00
			$\mathrm{L}=23.0$ ' RCP, end-section conforming to fill, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 170.50' / 170.20' S=0.0130 '/' Cc= 0.900
\#2	Discarded	169.00'	$2.410 \mathrm{in} / \mathrm{hr}$ Exfiltration over Surface area Phase-In= $0.01{ }^{\prime}$

Discarded OutFlow Max=0.13 cfs @ $9.62 \mathrm{hrs} \mathrm{HW}=169.06$ ' (Free Discharge)
(Exfiltration Controls 0.13 cfs)
L2=Exfiltration (Exfiltration Controls 0.13 cfs)
Primary OutFlow Max=5.22 cfs @ 12.08 hrs HW=171.50' TW=151.24' (Dynamic Tailwater)
L-1=Culvert (Barrel Controls 5.22 cfs @ 4.14 fps)

Pond 1BP: SPORTS COMPLEX INFILTRATION BASIN - Chamber Wizard Field A
Chamber Model = ADS_StormTechSC-310 +Cap (ADS StormTech®SC-310 with cap length)
Effective Size $=28.9$ "W $\times 16.0^{\prime \prime} \mathrm{H}=>2.07 \mathrm{sf} \times 7.12$ 'L $=14.7 \mathrm{cf}$
Overall Size $=34.0$ "W x 16.0"H x $7.56^{\prime} \mathrm{L}$ with 0.44 ' Overlap
34.0" Wide +6.0 " Spacing $=40.0$ " C-C Row Spacing

13 Chambers/Row x 7.12' Long +0.60' Cap Length $x 2=93.76$ ' Row Length $+12.0^{\prime \prime}$ End Stone $\times 2=95.76^{\prime}$ Base Length
7 Rows x 34.0" Wide $+6.0^{\prime \prime}$ Spacing x $6+12.0$ " Side Stone x $2=24.83$ ' Base Width
6.0" Stone Base + 16.0" Chamber Height $+6.0^{\prime \prime}$ Stone Cover $=2.33$ ' Field Height

91 Chambers $\times 14.7$ cf $=1,341.5$ cf Chamber Storage
$5,548.8$ cf Field $-1,341.5$ cf Chambers $=4,207.2$ cf Stone $\times 40.0 \%$ Voids $=1,682.9$ cf Stone Storage
Chamber Storage + Stone Storage $=3,024.4 \mathrm{cf}=0.069 \mathrm{af}$
Overall Storage Efficiency $=54.5 \%$
Overall System Size $=95.76^{\prime} \times 24.83^{\prime} \times 2.33^{\prime}$
91 Chambers
205.5 cy Field
155.8 cy Stone

Summary for Pond 1CP: MEMORIAL GROVE AVE. BASIN

Assumed slope of 0.005 for outlet culvert.

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 154.51' @ 13.39 hrs Surf.Area= 72,496 sf Storage $=267,257$ cf
Plug-Flow detention time $=150.0$ min calculated for 15.128 af (100% of inflow)
Center-of-Mass det. time= 147.8 min (996.7-848.9)

Primary OutFlow Max=33.58 cfs @ 13.39 hrs HW=154.51' TW=146.33' (Dynamic Tailwater)
L1=Culvert (Barrel Controls 33.58 cfs @ 8.45 fps)
Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=150.00' TW=142.50' (Dynamic Tailwater)
L-2=Broad-Crested Rectangular Weir(Controls 0.00 cfs)

Summary for Pond 1DP: UPSTREAM DOGLEG

 Routed to Pond 1EP : DOWNSTREAM DOGLEG

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 146.93' @ 14.39 hrs Surf.Area= 9,612 sf Storage= 11,983 cf
Plug-Flow detention time $=3.8 \mathrm{~min}$ calculated for 21.623 af (100% of inflow)
Center-of-Mass det. time $=3.8 \mathrm{~min}$ (995.1-991.3)

Summary for Pond 1EP: DOWNSTREAM DOGLEG

Inflow Area $=$	91.530 ac,	33.98%	Impervious, Inflow Depth $>$	$3.39 "$
Inflow	$=$	$63.46 \mathrm{cfs} @$	12.09 hrs, Volume= $25-$-year event	
Outflow	$=$	$62.18 \mathrm{cfs} @$	12.11 hrs, Volume=	25.853 af
Primary	$=$	$62.18 \mathrm{cfs} @$	12.11 hrs, Volume=	25.853 af , Atten= 2%, Lag $=0.9 \mathrm{~min}$

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 146.41' @ 14.63 hrs Surf.Area= 6,039 sf Storage= 8,815 cf
Plug-Flow detention time $=4.3 \mathrm{~min}$ calculated for 25.849 af (100% of inflow)
Center-of-Mass det. time= 4.3 min (967.3-963.1)

Primary OutFlow Max=61.90 cfs @ 12.11 hrs HW=145.03' TW=140.71' (Dynamic Tailwater) $L_{1=C u l v e r t ~(O u t l e t ~ C o n t r o l s ~}^{61.90}$ cfs @ 4.38 fps)

Summary for Pond 1FP: EXISTING PARKWAY BASIN

Primary Culvert - Assumed Inverts, pipe diameter, and pipe material.

Inflow Area =	$12.080 \mathrm{ac}, 30.88 \%$ Impervious, Inflow Depth = 3.65" for 25 -year event			
Inflow	51.74 cfs @	12.09 hrs , Volume=	3.679 af	
Outflow	4.87 cfs @	13.03 hrs , Volume=	2.188 af, At	Atten= 91%, Lag= 56.6 min
Primary = Routed to	$\begin{gathered} 4.87 \mathrm{cfs} @ \\ \text { IdP: UPSTF } \end{gathered}$	13.03 hrs , Volume= REAM TACAN	2.188 af	
Secondary = Routed to	$0.00 \text { cfs @ }$	0.00 hrs , Volume= REAM TACAN	0.000 af	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 147.58' @ 13.03 hrs Surf.Area= 25,821 sf Storage= 90,661 cf
Plug-Flow detention time $=335.8 \mathrm{~min}$ calculated for 2.188 af (59% of inflow)
Center-of-Mass det. time $=228.4 \mathrm{~min}(1,048.6-820.2)$

Primary OutFlow Max=4.87 cfs @ 13.03 hrs HW=147.58' TW=143.54' (Dynamic Tailwater)
—1=Culvert (Barrel Controls 4.87 cfs @ 4.08 fps)
Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=143.00' TW=137.80' (Dynamic Tailwater)
$\complement_{2=B r o a d-C r e s t e d ~ R e c t a n g u l a r ~ W e i r(~ C o n t r o l s ~} 0.00$ cfs)

Summary for Pond 1GP: SPORTS COMPLEX BASIN

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 169.58' @ 12.55 hrs Surf.Area= 4,379 sf Storage= 8,644 cf

Plug-Flow detention time $=23.7$ min calculated for 1.387 af (99% of inflow)
Center-of-Mass det. time $=20.2 \mathrm{~min}$ (817.9-797.7)

Primary OutFlow Max=5.58 cfs @ 12.55 hrs HW=169.57' TW=142.09' (Dynamic Tailwater)
—1=Culvert (Barrel Controls 5.58 cfs @ 7.10 fps)
Secondary OutFlow Max=3.49 cfs @ 12.55 hrs HW=169.57' TW=142.09' (Dynamic Tailwater)
L2=Broad-Crested Rectangular Weir(Weir Controls 3.49 cfs @ 1.41 fps)

Summary for Pond 1HP: SPORTS COMPLEX BASIN

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 164.58' @ 12.17 hrs Surf.Area= 2,625 sf Storage= 2,285 cf
Plug-Flow detention time $=8.9 \mathrm{~min}$ calculated for 0.602 af (100% of inflow)
Center-of-Mass det. time $=6.6 \mathrm{~min}(774.3-767.7)$

Primary OutFlow Max=4.74 cfs @ 12.17 hrs HW=164.57' TW=140.94' (Dynamic Tailwater)
-1=Culvert (Barrel Controls 4.74 cfs @ 6.03 fps)
Secondary OutFlow Max=0.38 cfs @ 12.17 hrs HW=164.57' TW=140.94' (Dynamic Tailwater)
—2=Broad-Crested Rectangular Weir(Weir Controls 0.38 cfs @ 0.73 fps)

Summary for Pond 1IP: UPSTREAM TACAN

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 145.81' @ 16.71 hrs Surf.Area= 1,330,651 sf Storage= 2,822,453 cf
Plug-Flow detention time $=366.6$ min calculated for 127.357 af (100% of inflow)
Center-of-Mass det. time $=366.5 \mathrm{~min}(1,287.8-921.2)$

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	137.80^{\prime}	$4,634,030$ cf	Custom Stage Data (Prismatic)Listed below (Recalc)

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
137.80	0	0	0
138.00	42,340	4,234	4,234
139.00	55,626	48,983	53,217
140.00	71,656	63,641	116,858
141.00	96,790	84,223	201,081
142.00	154,769	125,780	326,860
143.00	296,905	225,837	552,697
144.00	600,300	448,603	$1,001,300$
145.00	$1,084,818$	842,559	$1,843,859$
146.00	$1,388,214$	$1,236,516$	$3,080,375$
147.00	$1,719,095$	$1,553,655$	$4,634,030$

Device	Routing	Invert	Outlet Devices
\#1	Primary	137.80'	24.0" Round Culvert
			$\mathrm{L}=30.5$ ' RCP, end-section conforming to fill, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 137.80' / 137.40' S=0.0131 '/' Cc= 0.900
			$\mathrm{n}=0.013$ Concrete pipe, bends \& connections, Flow Area=3.14 sf
\#2	Secondary	137.80'	24.0" Round Culvert
			$\mathrm{L}=30.5$ ' RCP, end-section conforming to fill, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 137.80' / 137.30'S=0.0164 '/' Cc= 0.900
			$\mathrm{n}=0.013$ Concrete pipe, bends \& connections, Flow Area=3.14 sf
\#3	Tertiary	145.50'	30.0' long x 20.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.200 .400 .600 .801 .001 .201 .401 .60
			Coef. (English) 2.682 .702 .702 .642 .632 .642 .642 .63

Primary OutFlow Max=40.05 cfs @ 16.71 hrs HW=145.81' TW=136.23' (Dynamic Tailwater) $\leftarrow_{1=C u l v e r t ~(I n l e t ~ C o n t r o l s ~} 40.05$ cfs @ 12.75 fps)

Secondary OutFlow Max=40.05 cfs @ 16.71 hrs HW=145.81' TW=136.23' (Dynamic Tailwater) —2=Culvert (Inlet Controls 40.05 cfs @ 12.75 fps)

Tertiary OutFlow Max=13.95 cfs @ $16.71 \mathrm{hrs} \mathrm{HW}=145.81^{\prime}$ TW=136.23' (Dynamic Tailwater)
$\leftarrow_{3=B r o a d-C r e s t e d ~ R e c t a n g u l a r ~ W e i r(W e i r ~ C o n t r o l s ~} 13.95$ cfs @ 1.50 fps)

Summary for Pond 1JP: DOWNSTREAM TACAN

 Routed to Reach 1R : DP-1 TACAN OUTFALL

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 136.23' @ 16.66 hrs Surf.Area= 2,319 sf Storage= 2,276 cf
Plug-Flow detention time= 0.4 min calculated for 130.623 af (100% of inflow)
Center-of-Mass det. time $=0.4 \mathrm{~min}(1,277.7-1,277.4)$

Volume	Invert Avail.Storage Storage Description		
\#1	133.50'	98,669 cf Custo	tage Data (Prismatic)Listed below (Recalc)
$\begin{array}{r} \text { Elevation } \\ \quad \text { feet) } \end{array}$	$\begin{array}{r} \text { Surf.Area } \\ (\mathrm{sq}-\mathrm{ft}) \\ \hline \end{array}$	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
133.50	0	0	0
136.00	1,465	1,831	1,831
137.00	5,100	3,283	5,114
138.00	6,735	5,918	11,031
139.00	8,330	7,533	18,564
140.00	9,930	9,130	27,694
141.00	11,565	10,748	38,441
142.00	13,220	12,393	50,834
143.00	15,005	14,113	64,946
144.00	16,830	15,918	80,864
145.00	18,780	17,805	98,669

Device	Routing	Invert	Outlet Devices
$\# 1$	Primary	133.50^{\prime}	$\mathbf{6 0 . 0}$ " Round Culvert X 2.00

L= 899.0' RCP, end-section conforming to fill, $\mathrm{Ke}=0.500$ Inlet / Outlet Invert= 133.50' / 130.80' S=0.0030 '/' Cc= 0.900 $\mathrm{n}=0.013$ Concrete pipe, bends \& connections, Flow Area= 19.63 sf

Primary OutFlow Max=95.85 cfs @ 16.66 hrs HW=136.23' TW=0.00' (Dynamic Tailwater)
L-1=Culvert (Barrel Controls 95.85 cfs @ 6.32 fps)

Summary for Pond 2AP: FRENCH'S STREAM WEST BRANCH

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 146.91' @ 14.17 hrs Surf.Area= 208,066 sf Storage= 275,343 cf
Plug-Flow detention time $=12.9$ min calculated for 70.121 af (100% of inflow)
Center-of-Mass det. time= 12.9 min (927.9-915.1)

| Volume | Invert | Avail.Storage | Storage Description |
| ---: | ---: | ---: | ---: | ---: |
| $\# 1$ | 141.70 ' | $1,815,201 \mathrm{cf}$ | Custom Stage Data (Pr |
| Clevation
 (feet) | Surf.Area
 (sq-ft) | Inc.Store
 (cubic-feet) | Cum.Store
 (cubic-feet) |
| 141.70 | 0 | 0 | 0 |
| 144.00 | 6,640 | 7,636 | 7,636 |
| 145.00 | 57,230 | 31,935 | 39,571 |
| 146.00 | 117,540 | 87,385 | 126,956 |
| 147.00 | 216,860 | 167,200 | 294,156 |
| 148.00 | 359,360 | 288,110 | 582,266 |
| 149.00 | 640,140 | 499,750 | $1,082,016$ |
| 150.00 | 826,230 | 733,185 | $1,815,201$ |

Device	Routing	Invert	Outlet Devices
\#1	Primary	141.70'	48.0" Round Culvert
			$\mathrm{L}=126.0{ }^{\text {' }} \mathrm{RCP}$, end-section conforming to fill, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 141.70'/ 141.60' S= 0.0008 '/' Cc= 0.900
			$\mathrm{n}=0.013$, Flow Area= 12.57 sf
\#2	Secondary	141.70'	48.0" Round Culvert
			$\mathrm{L}=126.0^{\prime} \mathrm{RCP}$, end-section conforming to fill, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 141.70' / 141.50' S=0.0016 '/' Cc= 0.900
			$\mathrm{n}=0.013$, Flow Area= 12.57 sf

Primary OutFlow Max=82.92 cfs @ 14.17 hrs HW=146.91' TW=145.03' (Dynamic Tailwater)
—1=Culvert (Inlet Controls 82.92 cfs @ 6.60 fps)
Secondary OutFlow Max=85.43 cfs @ 13.96 hrs HW=146.87' TW=144.88' (Dynamic Tailwater)
L2=Culvert (Inlet Controls 85.43 cfs @ 6.80 fps)

Summary for Pond 2BP: EXISTING BASIN

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 149.96' @ 12.59 hrs Surf.Area= 87,833 sf Storage $=336,733$ cf
Plug-Flow detention time $=138.8$ min calculated for 18.405 af (98% of inflow)
Center-of-Mass det. time $=127.8 \mathrm{~min}$ (895.4-767.7)

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	143.00^{\prime}	482,855 cf	Custom Stage Data (Prismatic)Listed below (Recalc)

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
143.00	10,920	0	0
144.00	16,580	13,750	13,750
145.00	28,700	22,640	36,390
146.00	39,560	34,130	70,520
147.00	53,515	46,538	117,058
148.00	71,930	62,723	179,780
149.00	80,230	76,080	255,860
150.00	88,130	84,180	340,040
151.00	95,000	91,565	431,605
151.50	110,000	51,250	482,855

Device	Routing	Invert	Outlet Devices
\#1	Primary	144.00'	24.0" Round Culvert
			$\mathrm{L}=79.0{ }^{\prime}$ RCP, end-section conforming to fill, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 144.00' / 143.21' S= 0.0100 '/' Cc= 0.900 $\mathrm{n}=0.013$. Flow Area $=3.14 \mathrm{sf}$
\#2	Secondary	150.00'	10.0' long x 20.0 ' breadth Broad-Crested Rectangular Weir Head (feet) $0.20 \quad 0.400 .60 \quad 0.801 .001 .201 .401 .60$
			Coef. (English) 2.682 .702 .702 .642 .632 .642 .642 .63

Primary OutFlow Max=33.70 cfs @ 12.59 hrs HW=149.96' TW=144.82' (Dynamic Tailwater)
_1=Culvert (Inlet Controls 33.70 cfs @ 10.73 fps)
Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=143.00' TW=141.70' (Dynamic Tailwater)
$\complement_{2=B r o a d-C r e s t e d ~ R e c t a n g u l a r ~ W e i r(~ C o n t r o l s ~} 0.00$ cfs)

Summary for Pond 2CP: EXISTING PARKWAY BASIN

Existing basin information taken from Weymouth Patriot Parkway Utility As-Builts, prepared by LM Heavy Civil Construction LLC, dated October 15, 2018.

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
138.00	730	0	0
139.00	1,695	1,213	1,213
140.00	3,150	2,423	3,635
141.00	6,840	4,995	8,630
142.00	12,885	9,863	18,493
143.00	17,405	15,145	33,638
144.00	21,190	19,298	52,935
145.00	24,465	22,828	75,763
146.00	27,780	26,123	101,885
147.00	31,160	29,470	131,355
148.00	34,590	32,875	164,230
149.00	38,295	36,443	200,673
150.00	42,170	40,233	240,905

Device Routing Invert Outlet Devices
\#1 Primary $142.30^{\prime} \quad \mathbf{3 0 . 0} \mathbf{0}^{\prime \prime}$ Round Culvert
$\mathrm{L}=65.0^{\prime}$ RCP, end-section conforming to fill, $\mathrm{Ke}=0.500$ Inlet / Outlet Invert= 142.30' / 141.50' S=0.0123 '/l' Cc= 0.900 $\mathrm{n}=0.013$, Flow Area= 4.91 sf
\#2 Device $1 \quad 146.00$ 24.0" $\times \mathbf{2 4 . 0} \mathbf{n}^{\prime \prime}$ Horiz. Orifice/Grate $\mathrm{C}=0.600$ Limited to weir flow at low heads

Primary OutFlow Max=10.52 cfs @ 12.63 hrs HW=146.54' TW=141.98' (Dynamic Tailwater)
L-1=Culvert (Passes 10.52 cfs of 40.90 cfs potential flow)
$\left\llcorner_{2=O r i f i c e / G r a t e ~(W e i r ~ C o n t r o l s ~} 10.52\right.$ cfs @ 2.41 fps)

Summary for Pond 2DP: EXISTING PARKWAY BASIN

Existing basin information taken from Weymouth Patriot Parkway Utility As-Builts, prepared by LM Heavy Civil Construction LLC, dated October 15, 2018.

Routed to Pond 2EP : FRENCH'S STREAM WEST BRANCH
Secondary = $\quad 0.00 \mathrm{cfs}$ @ 0.00 hrs , Volume= $\quad 0.000$ af Routed to Pond 2EP : FRENCH'S STREAM WEST BRANCH

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 147.02' @ 12.62 hrs Surf.Area= 11,834 sf Storage= $47,025 \mathrm{cf}$
Plug-Flow detention time $=162.3$ min calculated for 2.239 af (72% of inflow)
Center-of-Mass det. time $=67.0 \mathrm{~min}(920.2-853.2$)

Primary OutFlow Max=17.45 cfs @ 12.62 hrs HW=147.02' TW=141.95' (Dynamic Tailwater) - $=$ Culvert (Passes 17.45 cfs of 29.18 cfs potential flow)

L2=Orifice/Grate (Orifice Controls 17.45 cfs @ 4.36 fps)
Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=139.00' TW=138.00' (Dynamic Tailwater)
${ }^{-3}$ =Broad-Crested Rectangular Weir(Controls 0.00 cfs)

Summary for Pond 2EP: FRENCH'S STREAM WEST BRANCH

Per site visit outlet consists of one 60-inch culvert.

Elevation (feet)	Surf.Area $(\mathrm{sq}-\mathrm{ft})$	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
138.00	0	0	0
140.00	9,600	9,600	9,600
141.00	13,135	11,368	20,968
142.00	35,665	24,400	45,368
143.00	47,280	41,473	86,840
144.00	58,400	52,840	139,680
145.00	71,585	64,993	204,673
146.00	85,230	78,408	283,080
147.00	106,515	95,873	378,953
148.00	183,900	145,208	524,160

Device Routing Invert Outlet Devices
\#1 Primary 138.00' 60.0" Round Culvert
$\mathrm{L}=380.0^{\prime}$ RCP, end-section conforming to fill, $\mathrm{Ke}=0.500$
Inlet / Outlet Invert= 138.00' / 135.70' S=0.0061 '/' Cc= 0.900 $\mathrm{n}=0.013$ Concrete pipe, bends \& connections, Flow Area= 19.63 sf

Primary OutFlow Max=193.74 cfs @ 14.39 hrs HW=145.08' TW=132.30' (Dynamic Tailwater)
L-1=Culvert (Barrel Controls 193.74 cfs @ 9.87 fps)

Summary for Pond 2FP: FRENCH'S STREAM WEST BRANCH

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 132.74' @ 13.54 hrs Surf.Area= 71,401 sf Storage= 142,442 cf
Plug-Flow detention time $=5.2 \mathrm{~min}$ calculated for 246.860 af (100% of inflow)
Center-of-Mass det. time $=5.0 \mathrm{~min}(1,119.4-1,114.5)$

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	125.90^{\prime}	665,278 cf	Custom Stage Data (Prismatic)Listed below (Recalc)

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
125.90	0	0	0
130.00	17,650	36,182	36,182
131.00	22,340	19,995	56,177
132.00	56,105	39,223	95,400
133.00	76,835	66,470	161,870
134.00	93,610	85,223	247,092
135.00	111,175	102,393	349,485
136.00	153,700	132,438	481,922
137.00	213,010	183,355	665,278

Device	Routing	Invert	Outlet Devices
\#1	Primary	127.60'	60.0" Round Culvert
			$\mathrm{L}=34.0$ ' RCP, end-section conforming to fill, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 126.60' / 127.60' S=-0.0294 '/' Cc= 0.900 $\mathrm{n}=0.013$, Flow Area= 19.63 sf
\#2	Secondary	126.70'	72.0" Round Culvert
			$\mathrm{L}=34.0{ }^{\prime} \mathrm{RCP}$, end-section conforming to fill, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 125.90' / 126.70' S=-0.0235 '/' Cc= 0.900 $\mathrm{n}=0.013$, Flow Area $=28.27 \mathrm{sf}$
\#3	Tertiary	135.50'	10.0' long x 20.0' breadth Spillway over Path
			Head (feet) 0.200 .400 .600 .801 .001 .201 .401 .60
			Coef. (English) 2.682 .702 .702 .642 .632 .642 .642 .63

Primary OutFlow Max=148.57 cfs @ 13.54 hrs HW=132.74' TW=0.00' (Dynamic Tailwater) L-1=Culvert (Barrel Controls 148.57 cfs @ 7.86 fps)

Secondary OutFlow Max=215.11 cfs @ 13.54 hrs HW=132.74' TW=0.00' (Dynamic Tailwater)

Tertiary OutFlow Max=0.00 cfs @ 0.00 hrs HW=125.90' TW=0.00' (Dynamic Tailwater)
$\left\llcorner_{3=S p i l l w a y ~ o v e r ~ P a t h ~(~ C o n t r o l s ~} 0.00 \mathrm{cfs}\right.$)

Summary for Pond 3AP: FRENCH'S STREAM EAST BRANCH

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 147.40' @ 13.31 hrs Surf.Area= 77,102 sf Storage= 58,131 cf
Plug-Flow detention time $=6.4 \mathrm{~min}$ calculated for 19.342 af (100% of inflow)
Center-of-Mass det. time $=6.2 \mathrm{~min}$ (887.8-881.6)

Summary for Pond 3BP: FRENCH'S STREAM EAST BRANCH

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 135.81' @ 13.58 hrs Surf.Area= 66,525 sf Storage= 204,979 cf
Plug-Flow detention time $=12.7 \mathrm{~min}$ calculated for 58.393 af (100% of inflow)
Center-of-Mass det. time= 12.7 min (919.5-906.8)

Summary for Subcatchment 1A:

Runoff $=\quad 5.92$ cfs @ 12.08 hrs, Volume $=\quad 0.457$ af, Depth= 6.94"
Routed to Pond 1AP : SPORTS COMPLEX INFILTRATION BASIN
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 100-year Rainfall=7.90"

Area	ac)	CN	Description			
0.	710	98	Pavement			
	080	39	>75\% Grass cover, Good, HSG A			
	790	92	Weighted Average			
	. 080		10.13\% Pervious Area			
	710		89.8	\% Imper	vious Area	
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.0						Direct Entry

Summary for Subcatchment 1B:

Runoff $=6.69 \mathrm{cfs} @ 12.08 \mathrm{hrs}$, Volume= $\quad 0.512$ af, Depth= 6.83"
Routed to Pond 1BP : SPORTS COMPLEX INFILTRATION BASIN
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 100-year Rainfall=7.90"

Summary for Subcatchment 1C:

Assumed pipe channel has slope 0.005 since no data given
Runoff $=135.86$ cfs @ 12.61 hrs, Volume= 20.834 af, Depth= $5.41^{\prime \prime}$

Routed to Pond 1CP : MEMORIAL GROVE AVE. BASIN
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 100-year Rainfall=7.90"

Area	ac) C	N Desc	ription		
16.950					
2.060		PavementRoofs			
0.750		100 Ope	Open Water		
0.690		30 Wo	Voods, Good, HSG A		
	980	Woods, Good, HSG C			
	380	77 Wood	Woods, Good, HSG D		
	150	30 Brus	Brush, Good, HSG A		
	810	$39>75$	75% Grass cover, Good, HSG A		
	130	74 >75	75\% Grass cover, Good, HSG C		
	270	$80>75$	75\% Grass cover, Good, HSG D		
46.170		79 Weig	Veighted Average		
26.410		57.20\% Pervious Area			
19.760		42.80\% Impervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	$\begin{array}{r} \text { Length } \\ \text { (feet) } \\ \hline \end{array}$	$\begin{array}{r} \text { Slope } \\ (\mathrm{ft} / \mathrm{ft}) \end{array}$	Velocity (ft/sec)	Capacity (cfs)	Description
23.4	100	0.0021	0.07		Sheet Flow, Grass: Short n=0.150 P2=3.40"
4.4	94	0.0026	0.36		Shallow Concentrated Flow,
					Short Grass Pasture Kv= 7.0 fps
7.7	252	0.0061	0.55		Shallow Concentrated Flow,
					Short Grass Pasture Kv= 7.0 fps
0.1	14	0.0701	1.85		Shallow Concentrated Flow,
					Short Grass Pasture Kv= 7.0 fps
2.9	154	0.0155	0.87		Shallow Concentrated Flow,
					Short Grass Pasture Kv= 7.0 fps
1.4	438	0.0050	5.09	16.00	Pipe Channel,
					24.0" Round Area= 3.1 sf Perim=6.3' r=0.50' $\mathrm{n}=0.013$ Concrete pipe, bends \& connections
0.8	288	0.0050	5.91	29.00	Pipe Channel,
					30.0" Round Area= 4.9 sf Perim= 7.9' r= 0.63' $\mathrm{n}=0.013$ Concrete pipe, bends \& connections
0.7	295	0.0050	6.67	47.16	Pipe Channel,
					36.0" Round Area= 7.1 sf Perim= 9.4' r= 0.75^{\prime} $\mathrm{n}=0.013$ Concrete pipe, bends \& connections
2.9	1,299	0.0050	7.39	71.14	Pipe Channel,
					42.0" Round Area= 9.6 sf Perim= 11.0' $\mathrm{r}=0.88{ }^{\prime}$
					$\mathrm{n}=0.013$ Concrete pipe, bends \& connections
0.2	93	0.0050	8.08	101.57	Pipe Channel, 48.0" Round Area= 12.6 sf Perim= 12.6' r= 1.00'

$\mathrm{n}=0.013$ Concrete pipe, bends \& connections
$44.53,027$ Total

Summary for Subcatchment 1D:

Runoff $=30.52$ cfs @ 13.91 hrs , Volume=
Routed to Pond 1DP : UPSTREAM DOGLEG
9.985 af, Depth= 3.70 "

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 100-year Rainfall=7.90"

[^5]
Summary for Subcatchment 1E:

Runoff $=78.20$ cfs @ 12.09 hrs, Volume $=\quad 5.760$ af, Depth= 6.12"
Routed to Pond 1EP : DOWNSTREAM DOGLEG
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 100-year Rainfall=7.90"

Summary for Subcatchment 1F:

Runoff $=72.87$ cfs @ 12.09 hrs, Volume= 5.217 af, Depth= 5.18"
Routed to Pond 1FP : EXISTING PARKWAY BASIN
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 100-year Rainfall=7.90"

Area		CN	Description			
* 3.	320	98	Pavement			
0.	410	100	Open Water			
	880	61	>75\% Grass cover, Good, HSG B			
	470	74	>75\% Grass cover, Good, HSG C			
	㖪	77	Weighted Average			
	350		69.12\% Pervious Area			
	730		30.88\% Impervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$			Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity (ft/sec)	$\begin{array}{r} \begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array} \end{array}$	Description
6.0						Direct Entry

Summary for Subcatchment 1G:

Runoff = 13.80 cfs @ 12.37 hrs, Volume= 1.840 af, Depth= 6.94"
Routed to Pond 1GP : SPORTS COMPLEX BASIN
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 100-year Rainfall=7.90"

Area	(ac)	N Desc	cription		
$\begin{aligned} & 1 . \\ & 0 . \\ & 0 . \end{aligned}$	850		ment		
	180	92 Weig	2hted Ave	age	
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description
$\begin{array}{r} 26.5 \\ 1.8 \end{array}$	346	0.0050	3.21	2.52	Direct Entry, Artificial Turf Pipe Channel, 12.0" Round Area= 0.8 sf Perim=3.1' r=0.25' $\mathrm{n}=0.013$ Corrugated PE , smooth interior
0.6	116	0.0050	3.21	2.52	Pipe Channel, 12.0" Round Area= 0.8 sf Perim=3.1' r= 0.25^{\prime} $\mathrm{n}=0.013$ Corrugated PE , smooth interior
0.0	11	0.0900	13.61	10.69	Pipe Channel, 12.0" Round Area= 0.8 sf Perim=3.1' $\mathrm{r}=0.25^{\prime}$ $\mathrm{n}=0.013$ Concrete pipe, bends \& connections
0.2	40	0.0050	4.20	7.43	Pipe Channel, 18.0" Round Area= 1.8 sf Perim=4.7' r=0.38' $\mathrm{n}=0.013$ Concrete pipe, bends \& connections
0.1	18	0.0050	4.20	7.43	Pipe Channel, 18.0" Round Area= 1.8 sf Perim=4.7' r=0.38' $\mathrm{n}=0.013$ Concrete pipe, bends \& connections

Summary for Subcatchment 1H:

Runoff $=10.05$ cfs @ 12.08 hrs, Volume= 0.790 af, Depth= 7.18"
Routed to Pond 1HP : SPORTS COMPLEX BASIN
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 100-year Rainfall=7.90"

Summary for Subcatchment 1I:

Runoff = 531.06 cfs @ 13.39 hrs, Volume $=137.302$ af, Depth= 5.30"
Routed to Pond 1IP : UPSTREAM TACAN
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 100-year Rainfall=7.90"

Summary for Subcatchment 1J:

Runoff $=46.18$ cfs @ 12.31 hrs, Volume= 5.168 af, Depth= 3.37"
Routed to Pond 1JP : DOWNSTREAM TACAN
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 100-year Rainfall=7.90"

Area (ac) CN Description					
* 3.780		98 Pav	Pavement		
12.310		48 Brus	Brush, Good, HSG B		
2.320		73 Br			
18.410		1 Weighted Average			
	630	79.4	\% Pervio	us Area	
	780	20.5	\% Imper	ious Area	
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
11.7	100	0.0120	0.14		Sheet Flow, Grass: Short $n=0.150 \quad P 2=3.40 "$
10.5	560	0.0160	0.89		Shallow Concentrated Flow, Short Grass Pasture Kv=7.0 fps

22.2660 Total

Summary for Subcatchment 2A:

Runoff $=226.01$ cfs @ 13.49 hrs, Volume= 60.729 af, Depth= 4.72"
Routed to Pond 2AP : FRENCH'S STREAM WEST BRANCH
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 100-year Rainfall=7.90"

111.4 2,530 Total

Summary for Subcatchment 2B:

Runoff $=311.35$ cfs @ 12.08 hrs, Volume $=24.480$ af, Depth= 7.18"
Routed to Pond 2BP : EXISTING BASIN
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 100-year Rainfall=7.90"

Area (ac)	CN	Description			
6.650	98	Pavement			
26.600	98	Roof			
7.650	74	>75\% Grass cover, Good, HSG C			
40.900	94	Weighted Average			
7.650		18.70\% Pervious Area			
33.250		81.30\% Impervious Area			
Tc Length (min) (feet)		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.0					Direct Entry

Summary for Subcatchment 2C:

Runoff = 104.23 cfs @ 12.09 hrs, Volume= 7.424 af, Depth= 4.84"
Routed to Pond 2CP : EXISTING PARKWAY BASIN
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 100-year Rainfall=7.90"

Area	ac)	CN	Description			
* 8.	840	98	Pavement			
	680	98	Roofs			
	280	39	>75\% Grass cover, Good, HSG A			
	620	74	>75\% Grass cover, Good, HSG C			
	420	74	Weighted Average			
	. 900		42.89\% Pervious Area			
	520		57.11\% Impervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)		Slope (ft/ft)	Velocity (ft/sec)	$\begin{array}{r} \begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array} \end{array}$	Description
6.0						Direct Entry

Summary for Subcatchment 2D:

Runoff $=40.34$ cfs @ 12.34 hrs, Volume= 4.590 af, Depth= 4.38"
Routed to Pond 2DP : EXISTING PARKWAY BASIN
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 100-year Rainfall=7.90"

Area (ac) CN Description								
* $\begin{array}{r}5.640 \\ 5.310 \\ 1.630\end{array}$		Pavement						
		>75\% Grass cover, Good, HSG A						
		$74>7$	>75\% Grass cover, Good, HSG C					
$\begin{array}{r} 12.580 \\ 6.940 \end{array}$		Weighted Average 55.17\% Pervious Area						
	640				44.8	\% Imper	vious Area	
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
1.6	100	0.0096	1.06		Sheet Flow, Smooth surfaces $n=0.011 \quad \mathrm{P} 2=3.40$ "			
0.2	31	0.0112	2.15		Shallow Concentrated Flow, Paved Kv=20.3 fps			
10.0	162	0.0015	0.27		Shallow Concentrated Flow, Short Grass Pasture Kv= 7.0 fps			
11.3	457	0.0011	0.67		Shallow Concentrated Flow, Paved Kv=20.3 fps			
0.5	43	0.0054	1.49		Shallow Concentrated Flow, Paved Kv= 20.3 fps			
0.3	43	0.1569	2.77		Shallow Concentrated Flow, Short Grass Pasture $\mathrm{Kv}=7.0 \mathrm{fps}$			

23.9836 Total

Summary for Subcatchment 2E:

Runoff $=76.38$ cfs @ 13.28 hrs, Volume= 18.122 af, Depth= 3.59"
Routed to Pond 2EP : FRENCH'S STREAM WEST BRANCH
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 100-year Rainfall=7.90"

[^6]
Summary for Subcatchment 2F:

Runoff = 207.68 cfs @ 13.07 hrs, Volume= 43.714 af, Depth= 4.26"
Routed to Pond 2FP : FRENCH'S STREAM WEST BRANCH
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 100-year Rainfall=7.90"

Summary for Subcatchment 2G:

Assumed Tc value
Runoff $=\quad 31.00 \mathrm{cfs} @ 13.47$ hrs, Volume= $\quad 9.092$ af, Depth= 6.59"
Routed to Pond 2AP : FRENCH'S STREAM WEST BRANCH

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 100-year Rainfall=7.90"

Summary for Subcatchment 2H:

Assumed Tc value
Runoff $=14.69$ cfs @ 13.47 hrs, Volume $=\quad 4.218$ af, Depth $=5.76 "$
Routed to Pond 2AP : FRENCH'S STREAM WEST BRANCH

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 100-year Rainfall=7.90"

Summary for Subcatchment 3A:

Runoff $=131.39$ cfs @ 12.97 hrs, Volume= 27.297 af, Depth= 5.30"
Routed to Pond 3AP : FRENCH'S STREAM EAST BRANCH
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 100-year Rainfall=7.90"

74.8 1,438 Total

Summary for Subcatchment 3B:

Runoff = 212.96 cfs @ 13.43 hrs, Volume= $\quad 55.695$ af, Depth= 5.07"
Routed to Pond 3BP : FRENCH'S STREAM EAST BRANCH
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 100-year Rainfall=7.90"

Summary for Reach 1R: DP-1 TACAN OUTFALL

Inflow Area $=437.470$ ac, 35.83% Impervious, Inflow Depth > 5.10" for 100-year event
Inflow $=170.79$ cfs @ 16.01 hrs, Volume $=185.867$ af
Outflow = $170.79 \mathrm{cfs} @ 16.01 \mathrm{hrs}$, Volume $=185.867 \mathrm{af}$, Atten= 0%, Lag $=0.0 \mathrm{~min}$
Routed to Pond 2FP : FRENCH'S STREAM WEST BRANCH
Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs

Summary for Reach 2R: DP-2 FRENCH'S STREAM WEST BRANCH
Inflow Area $=872.630$ ac, 27.98% Impervious, Inflow Depth $=4.88^{\prime \prime}$ for 100-year event
Inflow $=458.06$ cfs @ 13.47 hrs, Volume $=354.670$ af
Outflow $=458.06$ cfs @ 13.47 hrs , Volume $=354.670 \mathrm{af}$, Atten $=0 \%$, Lag $=0.0 \mathrm{~min}$
Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs

Summary for Reach 3R: DP-3 FRENCH'S STREAM EAST BRANCH

```
Inflow Area = 193.720 ac, 8.56% Impervious, Inflow Depth = 5.14" for 100-year event
Inflow = 314.32 cfs @ 13.51 hrs, Volume= 82.986 af
Outflow = 314.32 cfs @ 13.51 hrs, Volume= 82.986 af, Atten= 0%, Lag= 0.0 min
```

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs

Summary for Pond 1AP: SPORTS COMPLEX INFILTRATION BASIN

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 171.41' @ 12.08 hrs Surf.Area= 2,201 sf Storage= 2,834 cf
Plug-Flow detention time $=82.8 \mathrm{~min}$ calculated for 0.457 af (100% of inflow)
Center-of-Mass det. time= 82.8 min (852.2-769.4)

Volume	Invert	Avail.Storage	Storage Description
\#1A	168.50'	1,559 cf	24.83'W x 88.64'L x 2.33 'H Field A
			5,136 cf Overall - 1,238 cf Embedded = 3,898 cf $\times 40.0 \%$ Voids
\#2A	169.00'	1,238 cf	ADS_StormTech SC-310 +Capx 84 Inside \#1
			Effective Size= 28.9"W x 16.0"H => $2.07 \mathrm{sf} \times 7.12 \mathrm{~L}=14.7 \mathrm{c}$
			Overall Size=34.0"W x 16.0"H x 7.56'L with 0.44' Overlap
			84 Chambers in 7 Rows
\#3	168.50'	85 cf	4.00'D x 6.80'H CB-Impervious
\#4	175.20'	449 cf	Ponding at CB (Prismatic)Listed below (Recalc)

> 3,332 cf Total Available Storage

Storage Group A created with Chamber Wizard

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
175.20	10	0	0
176.00	300	124	124
176.50	1,000	325	449

Device	Routing	Invert	Outlet Devices
\#1	Primary	170.00'	18.0" Round Culvert
			$\mathrm{L}=13.0{ }^{\prime}$ RCP, end-section conforming to fill, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 170.00' / 169.85' S=0.0115 '/' Cc= 0.900 $\mathrm{n}=0.013$. Flow Area $=1.77 \mathrm{sf}$
\#2	Discarded	168.50'	2.410 in/hr Exfiltration over Surface area Phase-In= 0.01'

Discarded OutFlow Max=0.12 cfs @ $8.94 \mathrm{hrs} \mathrm{HW}=168.58$ ' (Free Discharge)
$\mathbf{2}=$ Exfiltration (Exfiltration Control 0.12 cfs)
L2=Exfiltration (Exfiltration Controls 0.12 cfs)
Primary OutFlow Max=5.80 cfs @ 12.08 hrs HW=171.41' TW=151.84' (Dynamic Tailwater)
L-1=Culvert (Barrel Controls 5.80 cfs @ 4.37 fps)

Pond 1AP: SPORTS COMPLEX INFILTRATION BASIN - Chamber Wizard Field A
Chamber Model = ADS_StormTechSC-310 +Cap (ADS StormTech®SC-310 with cap length)
Effective Size $=28.9$ "W $\times 16.0^{\prime \prime} \mathrm{H}=>2.07 \mathrm{sf} \times 7.12^{\prime} \mathrm{L}=14.7 \mathrm{cf}$
Overall Size $=34.0$ "W x 16.0"H x $7.56^{\prime} \mathrm{L}$ with 0.44 ' Overlap
34.0" Wide +6.0 " Spacing $=40.0$ " C-C Row Spacing

12 Chambers/Row x 7.12' Long +0.60' Cap Length $x 2=86.64$ ' Row Length $+12.0^{\prime \prime}$ End Stone $\times 2=88.64{ }^{\prime}$ Base Length
7 Rows x 34.0" Wide + 6.0" Spacing x 6 + 12.0" Side Stone x 2 = 24.83' Base Width
6.0" Stone Base + 16.0" Chamber Height $+6.0^{\prime \prime}$ Stone Cover $=2.33$ ' Field Height

84 Chambers $\times 14.7$ cf $=1,238.3$ cf Chamber Storage
5,136.2 cf Field $-1,238.3$ cf Chambers $=3,897.9$ cf Stone $\times 40.0 \%$ Voids $=1,559.1$ cf Stone Storage
Chamber Storage + Stone Storage $=2,797.5 \mathrm{cf}=0.064$ af
Overall Storage Efficiency = 54.5\%
Overall System Size $=88.64^{\prime} \times 24.83$ ' $\times 2.33^{\prime}$
84 Chambers
190.2 cy Field
144.4 cy Stone

Summary for Pond 1BP: SPORTS COMPLEX INFILTRATION BASIN

Inflow Area =	0.900 ac ,	\% Impervious,	Inflow Depth $=6.83$	" for 100-year event
Inflow	6.69 cfs @	12.08 hrs, Volume=	- 0.512 af	
Outflow	6.88 cfs @	12.08 hrs , Volume $=$	- $0.512 \mathrm{af}, \mathrm{A}$	Atten= 0\%, Lag= 0.0 min
Discarded =	0.13 cfs @	8.82 hrs , Volume=	- 0.224 af	
Primary	6.75 cfs @	12.08 hrs , Volume=	0.288 af	
Routed to	1CP : MEM	ORIAL GROVE AVE.	BASIN	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 171.80' @ 12.08 hrs Surf.Area= 2,378 sf Storage= 3,060 cf
Plug-Flow detention time $=80.7 \mathrm{~min}$ calculated for 0.512 af (100% of inflow)
Center-of-Mass det. time= 80.7 min (853.7-772.9)

Volume	Invert	Avail.Storage	Storage Description
\#1A	169.00'	1,683 cf	24.83'W x 95.76'L x 2.33'H Field A
			5,549 cf Overall - 1,342 cf Embedded $=4,207$ cf $\times 40.0 \%$ Voids
\#2A	169.50'	1,342 cf	ADS_StormTech SC-310 +Capx 91 Inside \#1
			Effective Size $=28.9$ "W x 16.0"H => $2.07 \mathrm{sf} \times 7.12 \mathrm{~L}=14.7$
			Overall Size $=34.0$ "W x 16.0"H $\times 7.56$ 'L with 0.44 ' Overlap
			91 Chambers in 7 Rows
\#3	169.00'	72 cf	4.00'D x 5.70'H CB-Impervious
\#4	172.70'	572 cf	Ponding at CB (Prismatic)Listed below (Recalc)

> 3,668 cf Total Available Storage

Storage Group A created with Chamber Wizard

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
172.70	10	0	0
173.00	300	47	47
174.50	400	525	572

Device	Routing	Invert	Outlet Devices
\#1	Primary	170.50'	12.0" Round Culvert X 2.00
			$\mathrm{L}=23.0$ ' RCP, end-section conforming to fill, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 170.50' / 170.20' S=0.0130 '/' Cc= 0.900
\#2	Discarded	169.00'	$2.410 \mathrm{in} / \mathrm{hr}$ Exfiltration over Surface area Phase-In= $0.01{ }^{\prime}$

Discarded OutFlow Max=0.13 cfs @ 8.82 hrs HW=169.06' (Free Discharge)
0.13 cfs)

Primary OutFlow Max=6.70 cfs @ 12.08 hrs HW=171.78' TW=151.83' (Dynamic Tailwater)
L-1=Culvert (Inlet Controls 6.70 cfs @ 4.27 fps)

Pond 1BP: SPORTS COMPLEX INFILTRATION BASIN - Chamber Wizard Field A
Chamber Model = ADS_StormTechSC-310 +Cap (ADS StormTech®SC-310 with cap length)
Effective Size $=28.9$ "W $\times 16.0^{\prime \prime} \mathrm{H}=>2.07 \mathrm{sf} \times 7.12$ 'L $=14.7 \mathrm{cf}$
Overall Size $=34.0$ "W x 16.0"H x 7.56'L with 0.44 ' Overlap
34.0" Wide +6.0 " Spacing $=40.0$ " C-C Row Spacing

13 Chambers/Row x 7.12' Long +0.60' Cap Length $x 2=93.76$ ' Row Length $+12.0^{\prime \prime}$ End Stone $\times 2=95.76^{\prime}$ Base Length
7 Rows x 34.0" Wide + 6.0" Spacing x 6 + 12.0" Side Stone x 2 = 24.83' Base Width
6.0" Stone Base + 16.0" Chamber Height + 6.0" Stone Cover = 2.33' Field Height

91 Chambers $\times 14.7$ cf $=1,341.5$ cf Chamber Storage
$5,548.8$ cf Field $-1,341.5$ cf Chambers $=4,207.2$ cf Stone $\times 40.0 \%$ Voids $=1,682.9$ cf Stone Storage
Chamber Storage + Stone Storage $=3,024.4 \mathrm{cf}=0.069 \mathrm{af}$
Overall Storage Efficiency = 54.5\%
Overall System Size $=95.76$ x 24.83 ' $\times 2.33$ '
91 Chambers
205.5 cy Field
155.8 cy Stone

Summary for Pond 1CP: MEMORIAL GROVE AVE. BASIN

Assumed slope of 0.005 for outlet culvert.

Inflow Area =Inflow =	47.860 ac, 44.44% Impervious, Inflow Depth $=5.36$ " for 100-year event			
	137.75 cfs @	12.61 hrs, Volume=	21.372 af	
Outflow	42.71 cfs @	13.43 hrs , Volume=	21.309 af, At	Atten= 69\%, Lag= 49.7 min
Primary	42.21 cfs @	13.43 hrs , Volume=	21.298 af	
Routed to Pond 1DP : UPSTREAM DOGLEG				
Secondary =	0.50 cfs @	13.43 hrs , Volume=	0.012 af	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 156.07' @ 13.43 hrs Surf.Area= 82,223 sf Storage= 388,123 cf
Plug-Flow detention time $=150.3$ min calculated for 21.309 af (100% of inflow)
Center-of-Mass det. time= 148.4 min (987.7-839.3)

Primary OutFlow Max=42.21 cfs @ 13.43 hrs HW=156.07' TW=147.54' (Dynamic Tailwater)
$L_{1=C u l v e r t ~(B a r r e l ~ C o n t r o l s ~} 42.21$ cfs @ 10.62 fps)
Secondary OutFlow Max=0.50 cfs @ 13.43 hrs HW=156.07' TW=147.54' (Dynamic Tailwater)
L2=Broad-Crested Rectangular Weir (Weir Controls 0.50 cfs @ 0.71 fps)

Summary for Pond 1DP: UPSTREAM DOGLEG

Inflow Area =	80.230 ac,	29.59\% Impervious,		for 100-year event
Inflow	71.77 cfs @	13.91 hrs, Volume=	31.294 af	
Outflow	65.48 cfs @	13.92 hrs , Volume=	31.294 af, At	Atten= 9\%, Lag= 1.1 min
Primary	32.74 cfs @	13.92 hrs , Volume=	15.457 af	
Routed to Pond 1EP : DOWNSTREAM DOGLEG				
Secondary =	32.74 cfs @	13.92 hrs, Volume=	15.838 af	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 148.96' @ 14.67 hrs Surf.Area= 20,149 sf Storage= 41,249 cf
Plug-Flow detention time $=7.4 \mathrm{~min}$ calculated for 31.290 af (100% of inflow)
Center-of-Mass det. time $=7.4 \mathrm{~min}$ (988.1-980.8)

Summary for Pond 1EP: DOWNSTREAM DOGLEG

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 147.97' @ 14.84 hrs Surf.Area= 13,002 sf Storage= 23,625 cf
Plug-Flow detention time $=5.5 \mathrm{~min}$ calculated for 37.054 af (100% of inflow)
Center-of-Mass det. time $=5.5 \mathrm{~min}$ (963.0-957.5)

Primary OutFlow Max=81.99 cfs @ 12.12 hrs HW=145.78' TW=141.88' (Dynamic Tailwater) L1=Culvert (Outlet Controls 81.99 cfs @ 4.44 fps)

Summary for Pond 1FP: EXISTING PARKWAY BASIN

Primary Culvert - Assumed Inverts, pipe diameter, and pipe material.

Inflow Area =	12.080 ac, 30.88% Impervious, Inflow Depth $=5.18$ " for 100-year event			
Inflow	72.87 cfs @	12.09 hrs, Volume=	5.217 af	
Outflow	13.33 cfs @	12.55 hrs , Volume=	3.726 af, Atten= 82\%, Lag= 27.5 min	
Primary	13.33 cfs @	12.55 hrs , Volume=	3.726 af	
Routed to Pond 1IP : UPSTREAM TACAN				
Secondary =	0.00 cfs @	0.00 hrs , Volume=	0.000 af	
Routed to	1IP : UPS	EAM TACAN		

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 148.54' @ 12.55 hrs Surf.Area= 28,531 sf Storage= 116,776 cf
Plug-Flow detention time $=257.0$ min calculated for 3.726 af (71% of inflow)
Center-of-Mass det. time $=165.6 \mathrm{~min}$ (975.8-810.2)

Device Routing Invert Outlet Devices
\#1 Primary 146.50' 24.0" Round Culvert
$\mathrm{L}=98.0^{\prime}$ RCP, end-section conforming to fill, $\mathrm{Ke}=0.500$ Inlet / Outlet Invert= 146.50' / 146.00' S=0.0051 '/' Cc= 0.900 $\mathrm{n}=0.013$ Concrete pipe, bends \& connections, Flow Area= 3.14 sf
\#2 Secondary 150.00 10.0' long x 20.0' breadth Broad-Crested Rectangular Weir Head (feet) $0.20 \quad 0.400 .60 \quad 0.801 .001 .201 .401 .60$ Coef. (English) 2.682 .702 .702 .642 .632 .642 .642 .63

Primary OutFlow Max=13.33 cfs @ 12.55 hrs HW=148.54' TW=143.11' (Dynamic Tailwater)
L- $_{1=C u l v e r t ~(B a r r e l ~ C o n t r o l s ~}^{13.33}$ cfs @ 5.16 fps)
Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=143.00' TW=137.80' (Dynamic Tailwater)
$\complement_{2=B r o a d-C r e s t e d ~ R e c t a n g u l a r ~ W e i r(~ C o n t r o l s ~} 0.00$ cfs)

Summary for Pond 1GP: SPORTS COMPLEX BASIN

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 169.75' @ 12.47 hrs Surf.Area= 4,540 sf Storage= 9,423 cf
Plug-Flow detention time $=20.8 \mathrm{~min}$ calculated for 1.832 af (100% of inflow)
Center-of-Mass det. time $=18.1 \mathrm{~min}$ (809.0-790.9)

Primary OutFlow Max=5.76 cfs @ 12.47 hrs HW=169.75' TW=142.90' (Dynamic Tailwater)
—1=Culvert (Barrel Controls 5.76 cfs @ 7.34 fps)
Secondary OutFlow Max=7.33 cfs @ 12.47 hrs HW=169.75' TW=142.90' (Dynamic Tailwater)
L2=Broad-Crested Rectangular Weir(Weir Controls 7.33 cfs @ 1.81 fps)

Summary for Pond 1HP: SPORTS COMPLEX BASIN

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 164.79' @ 12.15 hrs Surf.Area= 3,201 sf Storage= 2,902 cf
Plug-Flow detention time $=8.2 \mathrm{~min}$ calculated for 0.788 af (100% of inflow)
Center-of-Mass det. time $=6.2 \mathrm{~min}(767.9-761.7)$

Primary OutFlow Max=5.00 cfs @ 12.15 hrs HW=164.79' TW=141.97' (Dynamic Tailwater)
-1=Culvert (Barrel Controls 5.00 cfs @ 6.36 fps)
Secondary OutFlow Max=2.88 cfs @ 12.15 hrs HW=164.79' TW=141.97' (Dynamic Tailwater)
L2=Broad-Crested Rectangular Weir(Weir Controls 2.88 cfs @ 1.44 fps)

Summary for Pond 1IP: UPSTREAM TACAN

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 146.54' @ 16.05 hrs Surf.Area= 1,566,257 sf Storage= 3,875,260 cf
Plug-Flow detention time $=368.4$ min calculated for 180.699 af (100% of inflow)
Center-of-Mass det. time $=368.3 \mathrm{~min}(1,280.4-912.0)$

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	137.80^{\prime}	$4,634,030$ cf	Custom Stage Data (Prismatic)Listed below (Recalc)

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
137.80	0	0	0
138.00	42,340	4,234	4,234
139.00	55,626	48,983	53,217
140.00	71,656	63,641	116,858
141.00	96,790	84,223	201,081
142.00	154,769	125,780	326,860
143.00	296,905	225,837	552,697
144.00	600,300	448,603	$1,001,300$
145.00	$1,084,818$	842,559	$1,843,859$
146.00	$1,388,214$	$1,236,516$	$3,080,375$
147.00	$1,719,095$	$1,553,655$	$4,634,030$

Device	Routing	Invert	Outlet Devices
\#1	Primary	137.80'	24.0" Round Culvert
			$\mathrm{L}=30.5$ ' RCP, end-section conforming to fill, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 137.80' / 137.40' S=0.0131 '/' Cc= 0.900
			$\mathrm{n}=0.013$ Concrete pipe, bends \& connections, Flow Area=3.14 sf
\#2	Secondary	137.80'	24.0" Round Culvert
			$\mathrm{L}=30.5$ ' RCP, end-section conforming to fill, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 137.80' / 137.30'S=0.0164 '/' Cc= 0.900
			$\mathrm{n}=0.013$ Concrete pipe, bends \& connections, Flow Area=3.14 sf
\#3	Tertiary	145.50'	30.0' long x 20.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.200 .400 .600 .801 .001 .201 .401 .60
			Coef. (English) 2.682 .702 .702 .642 .632 .642 .642 .63

Primary OutFlow Max=42.08 cfs @ 16.05 hrs HW=146.54' TW=137.35' (Dynamic Tailwater) \&1=Culvert (Inlet Controls 42.08 cfs @ 13.39 fps)

Secondary OutFlow Max=42.08 cfs @ 16.05 hrs HW=146.54' TW=137.35' (Dynamic Tailwater) —2=Culvert (Inlet Controls 42.08 cfs @ 13.39 fps)

Tertiary OutFlow Max=83.51 cfs @ $16.05 \mathrm{hrs} \mathrm{HW}=146.54^{\prime}$ TW=137.35' (Dynamic Tailwater)
$\leftarrow_{3=B r o a d-C r e s t e d ~ R e c t a n g u l a r ~ W e i r(W e i r ~ C o n t r o l s ~}^{23.51}$ cfs @ 2.68 fps)

Summary for Pond 1JP: DOWNSTREAM TACAN

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 137.35' @ 16.01 hrs Surf.Area= 5,666 sf Storage= 6,977 cf
Plug-Flow detention time $=0.5 \mathrm{~min}$ calculated for 185.841 af (100% of inflow)
Center-of-Mass det. time $=0.5 \mathrm{~min}(1,269.1-1,268.7)$

Volume	Invert Avail.Storage Storage Description		
\#1	133.50'	98,669 cf Custo	tage Data (Prismatic)Listed below (Recalc)
$\begin{array}{r} \text { Elevation } \\ \quad \text { feet) } \end{array}$	$\begin{array}{r} \text { Surf.Area } \\ (\mathrm{sq}-\mathrm{ft}) \\ \hline \end{array}$	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
133.50	0	0	0
136.00	1,465	1,831	1,831
137.00	5,100	3,283	5,114
138.00	6,735	5,918	11,031
139.00	8,330	7,533	18,564
140.00	9,930	9,130	27,694
141.00	11,565	10,748	38,441
142.00	13,220	12,393	50,834
143.00	15,005	14,113	64,946
144.00	16,830	15,918	80,864
145.00	18,780	17,805	98,669

Device	Routing	Invert	Outlet Devices
\#1	Primary	133.50	60.0" Round Culvert X 2.00

L= 899.0' RCP, end-section conforming to fill, $\mathrm{Ke}=0.500$ Inlet / Outlet Invert= 133.50' / 130.80' S=0.0030 '/' Cc= 0.900 $\mathrm{n}=0.013$ Concrete pipe, bends \& connections, Flow Area= 19.63 sf

Primary OutFlow Max=170.79 cfs @ 16.01 hrs HW=137.35' TW=0.00' (Dynamic Tailwater)
—1=Culvert (Barrel Controls 170.79 cfs @ 7.28 fps)

Summary for Pond 2AP: FRENCH'S STREAM WEST BRANCH

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 148.37' @ 14.55 hrs Surf.Area= 463,281 sf Storage= 734,502 cf
Plug-Flow detention time $=31.8$ min calculated for 98.183 af (100% of inflow)
Center-of-Mass det. time= $31.8 \mathrm{~min}(942.4-910.6)$

Volume	Invert Av	age Storag	Storage Description
\#1	141.70' 1,815,201 cf	201 cf Cus	tage Data (Pr
Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
141.70	0	0	0
144.00	6,640	7,636	7,636
145.00	57,230	31,935	39,571
146.00	117,540	87,385	126,956
147.00	216,860	167,200	294,156
148.00	359,360	288,110	582,266
149.00	640,140	499,750	1,082,016
150.00	826,230	733,185	1,815,201

Device	Routing	Invert	Outlet Devices
\#1	Primary	141.70'	48.0" Round Culvert
			$\mathrm{L}=126.0{ }^{\text {' }} \mathrm{RCP}$, end-section conforming to fill, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 141.70'/ 141.60' S= 0.0008 '/' Cc= 0.900
			$\mathrm{n}=0.013$, Flow Area= 12.57 sf
\#2	Secondary	141.70'	48.0" Round Culvert
			$\mathrm{L}=126.0^{\prime} \mathrm{RCP}$, end-section conforming to fill, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 141.70' / 141.50' S=0.0016 '/' Cc= 0.900
			$\mathrm{n}=0.013$, Flow Area= 12.57 sf

Primary OutFlow Max=87.45 cfs @ 15.02 hrs HW=148.28' TW=146.20' (Dynamic Tailwater)
—1=Culvert (Inlet Controls 87.45 cfs @ 6.96 fps)
Secondary OutFlow Max=87.45 cfs @ 15.02 hrs HW=148.28' TW=146.20' (Dynamic Tailwater)
_2=Culvert (Inlet Controls 87.45 cfs @ 6.96 fps)

Summary for Pond 2BP: EXISTING BASIN

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev=150.94' @ 12.52 hrs Surf.Area= 94,618 sf Storage $=426,331$ cf
Plug-Flow detention time $=152.8$ min calculated for 24.157 af (99% of inflow)
Center-of-Mass det. time= $144.2 \mathrm{~min}(905.9-761.7$)

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	143.00	482,855 cf	Custom Stage Data (Prismatic)Listed below (Recalc)

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
143.00	10,920	0	0
144.00	16,580	13,750	13,750
145.00	28,700	22,640	36,390
146.00	39,560	34,130	70,520
147.00	53,515	46,538	117,058
148.00	71,930	62,723	179,780
149.00	80,230	76,080	255,860
150.00	88,130	84,180	340,040
151.00	95,000	91,565	431,605
151.50	110,000	51,250	482,855

Device	Routing	Invert	Outlet Devices
\#1	Primary	144.00'	24.0" Round Culvert
			$\mathrm{L}=79.0{ }^{\prime}$ RCP, end-section conforming to fill, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 144.00' / 143.21' S= 0.0100 '/' Cc= 0.900 $\mathrm{n}=0.013$. Flow Area $=3.14 \mathrm{sf}$
\#2	Secondary	150.00'	10.0' long x 20.0 ' breadth Broad-Crested Rectangular Weir Head (feet) $0.20 \quad 0.400 .60 \quad 0.801 .001 .201 .401 .60$
			Coef. (English) 2.682 .702 .702 .642 .632 .642 .642 .63

Primary OutFlow Max=36.54 cfs @ 12.39 hrs HW=150.86' TW=145.03' (Dynamic Tailwater)
_1=Culvert (Inlet Controls 36.54 cfs @ 11.63 fps)
Secondary OutFlow Max=24.16 cfs @ 12.52 hrs HW=150.94' TW=145.32' (Dynamic Tailwater)
-2=Broad-Crested Rectangular Weir(Weir Controls 24.16 cfs @ 2.56 fps)

Summary for Pond 2CP: EXISTING PARKWAY BASIN

Existing basin information taken from Weymouth Patriot Parkway Utility As-Builts, prepared by LM Heavy Civil Construction LLC, dated October 15, 2018.

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 147.61' @ 12.50 hrs Surf.Area= 33,249 sf Storage= 150,968 cf
Plug-Flow detention time $=190.7$ min calculated for 5.084 af (68% of inflow)
Center-of-Mass det. time $=94.0 \mathrm{~min}(910.8-816.8)$

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	138.00	$240,905 \mathrm{cf}$	Custom Stage Data (Prismatic)Listed below (Recalc)

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
138.00	730	0	0
139.00	1,695	1,213	1,213
140.00	3,150	2,423	3,635
141.00	6,840	4,995	8,630
142.00	12,885	9,863	18,493
143.00	17,405	15,145	33,638
144.00	21,190	19,298	52,935
145.00	24,465	22,828	75,763
146.00	27,780	26,123	101,885
147.00	31,160	29,470	131,355
148.00	34,590	32,875	164,230
149.00	38,295	36,443	200,673
150.00	42,170	40,233	240,905

Device	Routing	Invert	Outlet Devices
\#1	Primary	142.30'	30.0" Round Culvert
			$\mathrm{L}=65.0^{\prime}$ RCP, end-section conforming to fill, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 142.30' / 141.50' S=0.0123 '/' Cc= 0.900 $n=0.013$, Flow Area $=4.91 \mathrm{sf}$
\#2	Device 1	146.00'	24.0" \times 24.0" Horiz. Orifice/Grate $\mathrm{C}=0.600$

Primary OutFlow Max=24.43 cfs @ 12.50 hrs HW=147.61' TW=142.63' (Dynamic Tailwater)
L-1=Culvert (Passes 24.43 cfs of 47.62 cfs potential flow)

Summary for Pond 2DP: EXISTING PARKWAY BASIN

Existing basin information taken from Weymouth Patriot Parkway Utility As-Builts, prepared by LM Heavy Civil Construction LLC, dated October 15, 2018.

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 148.08' @ 12.60 hrs Surf.Area= 13,563 sf Storage= $60,486 \mathrm{cf}$
Plug-Flow detention time $=124.2$ min calculated for 3.721 af (81% of inflow)
Center-of-Mass det. time= $48.8 \mathrm{~min}(890.8-842.0)$

Primary OutFlow Max=26.42 cfs @ 12.60 hrs HW=148.08' TW=143.06' (Dynamic Tailwater)
1=Culvert (Passes 26.42 cfs of 33.08 cfs potential flow)
$L_{2}=$ Orifice/Grate (Orifice Controls 26.42 cfs @ 6.60 fps)
Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=139.00' TW=138.00' (Dynamic Tailwater)
${ }^{-3}$ =Broad-Crested Rectangular Weir(Controls 0.00 cfs)

Summary for Pond 2EP: FRENCH'S STREAM WEST BRANCH

Per site visit outlet consists of one 60-inch culvert.

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
138.00	0	0	0
140.00	9,600	9,600	9,600
141.00	13,135	11,368	20,968
142.00	35,665	24,400	45,368
143.00	47,280	41,473	86,840
144.00	58,400	52,840	139,680
145.00	71,585	64,993	204,673
146.00	85,230	78,408	283,080
147.00	106,515	95,873	378,953
148.00	183,900	145,208	524,160

Device Routing Invert Outlet Devices
\#1 Primary 138.00' 60.0" Round Culvert
$\mathrm{L}=380.0^{\prime}$ RCP, end-section conforming to fill, $\mathrm{Ke}=0.500$
Inlet / Outlet Invert= 138.00' / 135.70' S=0.0061 '/' Cc= 0.900 $\mathrm{n}=0.013$ Concrete pipe, bends \& connections, Flow Area= 19.63 sf

Primary OutFlow Max=219.93 cfs @ 14.26 hrs HW=146.34' TW=133.70' (Dynamic Tailwater)
L-1=Culvert (Barrel Controls 219.93 cfs @ 11.20 fps)

Summary for Pond 2FP: FRENCH'S STREAM WEST BRANCH

Inflow Area =	872.630 ac	7.98\% Impervious, In	Inflow Depth = 4.8	for 100-year event
Inflow	483.24 cfs @	13.16 hrs, Volume=	- 354.706 af	
Outflow	458.06 cfs @	13.47 hrs , Volume=	$=354.670 \mathrm{af}, \mathrm{A}$	Atten $=5 \%, L a g=18.7$ min
Primary	189.85 cfs @	13.47 hrs , Volume=	128.906 af	
Routed to Reach 2R : DP-2 FRENCH'S STREAM WEST BRANCH				
Secondary =	268.20 cfs @	13.47 hrs , Volume=	225.764 af	
Routed to	each 2R : DP-2	FRENCH'S STREAM	W WEST BRANCH	
Tertiary	0.00 cfs @	0.00 hrs , Volume=	0.000 af	
Routed to	ach 2R : DP-2	FRENCH'S STREAM	W WEST BRANCH	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 134.13' @ 13.47 hrs Surf.Area= 95,941 sf Storage= 259,668 cf
Plug-Flow detention time $=6.6 \mathrm{~min}$ calculated for 354.621 af (100% of inflow)
Center-of-Mass det. time $=6.4 \mathrm{~min}(1,117.1-1,110.8)$

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	125.90^{\prime}	665,278 cf	Custom Stage Data (Prismatic)Listed below (Recalc)

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
125.90	0	0	0
130.00	17,650	36,182	36,182
131.00	22,340	19,995	56,177
132.00	56,105	39,223	95,400
133.00	76,835	66,470	161,870
134.00	93,610	85,223	247,092
135.00	111,175	102,393	349,485
136.00	153,700	132,438	481,922
137.00	213,010	183,355	665,278

Device	Routing	Invert	Outlet Devices
\#1	Primary	127.60'	60.0" Round Culvert
			$\mathrm{L}=34.0$ ' RCP, end-section conforming to fill, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 126.60' / 127.60' S=-0.0294 '/' Cc= 0.900 $\mathrm{n}=0.013$, Flow Area= 19.63 sf
\#2	Secondary	126.70'	72.0" Round Culvert
			$\mathrm{L}=34.0{ }^{\prime}$ RCP, end-section conforming to fill, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 125.90' / 126.70' S=-0.0235 '/' Cc= 0.900 $\mathrm{n}=0.013$, Flow Area $=28.27 \mathrm{sf}$
\#3	Tertiary	135.50'	10.0' long x 20.0' breadth Spillway over Path
			Head (feet) 0.200 .400 .600 .801 .001 .201 .401 .60
			Coef. (English) 2.682 .702 .702 .642 .632 .642 .642 .63

Primary OutFlow Max=189.85 cfs @ 13.47 hrs HW=134.13' TW=0.00' (Dynamic Tailwater) \&1=Culvert (Inlet Controls 189.85 cfs @ 9.67 fps)

Secondary OutFlow Max=268.20 cfs @ 13.47 hrs HW=134.13' TW=0.00' (Dynamic Tailwater)
—2=Culvert (Barrel Controls 268.20 cfs @ 9.49 fps)
Tertiary OutFlow Max=0.00 cfs @ 0.00 hrs HW=125.90' TW=0.00' (Dynamic Tailwater)
$\left\llcorner_{3=S p i l l w a y ~ o v e r ~ P a t h ~(~ C o n t r o l s ~} 0.00 \mathrm{cfs}\right.$)

Summary for Pond 3AP: FRENCH'S STREAM EAST BRANCH

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 147.92' @ 13.38 hrs Surf.Area= 137,190 sf Storage= 114,298 cf
Plug-Flow detention time= 9.2 min calculated for 27.291 af (100% of inflow)
Center-of-Mass det. time $=8.9 \mathrm{~min}$ (880.7-871.8)

Summary for Pond 3BP: FRENCH'S STREAM EAST BRANCH

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 136.34' @ 13.51 hrs Surf.Area= 73,867 sf Storage $=242,197$ cf
Plug-Flow detention time $=12.5 \mathrm{~min}$ calculated for 82.974 af (100% of inflow)
Center-of-Mass det. time=12.5 $\min (910.3-897.8)$

Area Listing (all nodes)

Area (acres)	CN	Description (subcatchment-numbers)
2.660	39	$>75 \%$ Grass cover, Good, HSG A (5B)
32.570	61	$>75 \%$ Grass cover, Good, HSG B (4C, 5B)
0.650	74	$>75 \%$ Grass cover, Good, HSG C (4C)
18.510	80	$>75 \%$ Grass cover, Good, HSG D (4C, 5A, 5B)
7.520	48	Brush, Good, HSG B (4A, 4B, 4C, 5B)
1.360	73	Brush, Good, HSG D (4C)
44.260	98	Pavement (4A, 4B, 4C, 5A, 5B)
0.200	100	Water - Basin (4A)
0.400	100	Water - Basin Area (4B)
4.390	30	Woods, Good, HSG A (5A, 5B)
31.160	55	Woods, Good, HSG B (4C, 5B)
2.630	70	Woods, Good, HSG C (4C)
71.820	77	Woods, Good, HSG D (4C, 5A, 5B)
$\mathbf{2 1 8 . 1 3 0}$	$\mathbf{7 4}$	TOTAL AREA

Summary for Subcatchment 4A:

Runoff $=\quad 3.20$ cfs @ 12.10 hrs, Volume= 0.264 af, Depth= $0.79{ }^{\prime \prime}$
Routed to Pond 4AP : EXISTING PARKWAY BASIN
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 2-year Rainfall=3.40"

Area		CN	Description			
1.	340	98	Pavement			
0	200	100	Water - Basin			
	440	48	Brush, Good, HSG B			
	980	67	Weighted Average			
	440		61.31\% Pervious Area			
	540		38.69\% Impervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$			Slope (ft/ft)	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \\ \hline \end{array}$	Description
6.0						Direct Entry

Summary for Subcatchment 4B:

$10 "$ RCP pipe was assumed entering main 24 " pipeline and inverts were assumed 0.005 .
24"RCP - inverts assumed 0.005
(2) 48 " RCP were assumed 0.005 invert and only entered as $1-48$ " RCP

60"RCP and last 48" RCP had assumed invert at 0.005
Runoff $=\quad 11.77$ cfs @ 12.09 hrs, Volume $=$
Routed to Pond 4BP:EXISTING PARKWAY BASIN

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 2-year Rainfall=3.40"

Summary for Subcatchment 4C:

Runoff $=18.34$ cfs @ 13.73 hrs, Volume= 5.656 af, Depth= 1.06"
Routed to Reach 4R : DP-4 OLD SWAMP RIVER (UPSTREAM)
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 2-year Rainfall=3.40"

[^7]
Summary for Subcatchment 5A:

Runoff $=\quad 25.45 \mathrm{cfs} @ 12.98 \mathrm{hrs}$, Volume= $\quad 5.145$ af, Depth= 1.29"
Routed to Reach 5R : DP-5 OLD SWAMP RIVER (DOWNSTREAM)
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 2-year Rainfall=3.40"

[^8]
Summary for Subcatchment 5B:

Runoff $=43.79$ cfs @ 12.98 hrs, Volume= 9.096 af, Depth= 1.11"
Routed to Reach 5R : DP-5 OLD SWAMP RIVER (DOWNSTREAM)
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 2-year Rainfall=3.40"

Summary for Reach 4R: DP-4 OLD SWAMP RIVER (UPSTREAM)

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs

Summary for Reach 5R: DP-5 OLD SWAMP RIVER (DOWNSTREAM)

Inflow Area $=145.820$ ac, 24.63% Impervious, Inflow Depth $=1.17$ " for 2-year event
Inflow $=\quad 69.24$ cfs @ 12.98 hrs , Volume $=14.241 \mathrm{af}$
Outflow $=69.24$ cfs @ 12.98 hrs , Volume $=14.241 \mathrm{af}$, Atten $=0 \%$, Lag $=0.0 \mathrm{~min}$
Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs

Summary for Pond 4AP: EXISTING PARKWAY BASIN

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 146.52' @ 12.49 hrs Surf.Area= 5,925 sf Storage= 2,898 cf
Plug-Flow detention time $=85.7$ min calculated for 0.263 af (100% of inflow)
Center-of-Mass det. time= 85.7 min (967.6-881.9)

Primary OutFlow Max=1.08 cfs @ 12.49 hrs HW=146.52' TW=0.00' (Dynamic Tailwater)
—1=Culvert (Inlet Controls 1.08 cfs @ 2.50 fps)
Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=145.98' TW=0.00' (Dynamic Tailwater)
L2=Broad-Crested Rectangular Weir (Controls 0.00 cfs) $^{\text {2 }}$

Summary for Pond 4BP: EXISTING PARKWAY BASIN

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 136.57' @ 24.34 hrs Surf.Area= 14,463 sf Storage= 37,451 cf
Plug-Flow detention time=(not calculated: initial storage exceeds outflow)
Center-of-Mass det. time= (not calculated: no outflow)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=132.00' TW=0.00' (Dynamic Tailwater)
—1=Culvert (Controls 0.00 cfs)
Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=132.00' TW=0.00' (Dynamic Tailwater)
—2=Broad-Crested Rectangular Weir(Controls 0.00 cfs)

Summary for Subcatchment 4A:

Runoff $=8.47 \mathrm{cfs} @ 12.09 \mathrm{hrs}$, Volume= $\quad 0.621$ af, Depth= $1.87{ }^{\prime \prime}$
Routed to Pond 4AP : EXISTING PARKWAY BASIN
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10-year Rainfall=5.10"

Area	(ac)	CN	Description			
1.	340	98	Pavement			
0	200	100	Water - Basin			
	440	48	Brush, Good, HSG B			
	. 980	67	Weighted Average			
	440		61.31\% Pervious Area			
	540		38.69\% Impervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$			Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.0						Direct Entry

Summary for Subcatchment 4B:

$10 "$ RCP pipe was assumed entering main 24 " pipeline and inverts were assumed 0.005 .
24"RCP - inverts assumed 0.005
(2) 48 " RCP were assumed 0.005 invert and only entered as $1-48$ " RCP

60"RCP and last 48" RCP had assumed invert at 0.005

Runoff $=18.89$ cfs @ 12.08 hrs, Volume=
Routed to Pond 4BP : EXISTING PARKWAY BASIN

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10-year Rainfall=5.10"

	Area (ac)	CN	Description
$*$	3.130	98	Pavement
$*$	0.400	100	Water - Basin Area
	0.530	48	Brush, Good, HSG B
	4.060	92	Weighted Average
	0.530		13.05\% Pervious Area
	3.530		86.95\% Impervious Area

| Tc
 (min) | Length
 (feet) | Slope
 $(\mathrm{ft} / \mathrm{ft})$ | Velocity
 $(\mathrm{ft} / \mathrm{sec})$ |
| ---: | ---: | ---: | ---: | | Capacity |
| ---: |
| (cfs) |\quad Description | Direct Entry, |
| :--- |

Summary for Subcatchment 4C:

Runoff $=41.83 \mathrm{cfs} @ 13.73 \mathrm{hrs}$, Volume= $\quad 12.185$ af, Depth= 2.28"
Routed to Reach 4R : DP-4 OLD SWAMP RIVER (UPSTREAM)
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10-year Rainfall=5.10"

Area (ac)	CN	Description	
$*$	3.880	98	Pavement
7.340	55	Woods, Good, HSG B	
2.630	70	Woods, Good, HSG C	
34.020	77	Woods, Good, HSG D	
2.390	48	Brush, Good, HSG B	
1.360	73	Brush, Good, HSG D	
10.650	61	>75\% Grass cover, Good, HSG B	
0.650	74	>75\% Grass cover, Good, HSG C	
1.350	80	$>75 \%$ Grass cover, Good, HSG D	

[^9]
Summary for Subcatchment 5A:

Runoff $=53.02$ cfs @ 12.97 hrs, Volume= 10.416 af, Depth= 2.62"
Routed to Reach 5R : DP-5 OLD SWAMP RIVER (DOWNSTREAM)
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10-year Rainfall=5.10"

[^10]
Summary for Subcatchment 5B:

Runoff $=97.52$ cfs @ 12.97 hrs, Volume= 19.282 af, Depth= 2.36"
Routed to Reach 5R : DP-5 OLD SWAMP RIVER (DOWNSTREAM)
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10-year Rainfall=5.10"

Summary for Reach 4R: DP-4 OLD SWAMP RIVER (UPSTREAM)

```
Inflow Area = 72.310 ac, 12.38% Impervious, Inflow Depth = 2.20" for 10-year event
Inflow = 43.18 cfs @ 13.61 hrs, Volume= 13.244 af
Outflow = 43.18 cfs @ 13.61 hrs, Volume= 13.244 af, Atten= 0%, Lag= 0.0 min
```

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs

Summary for Reach 5R: DP-5 OLD SWAMP RIVER (DOWNSTREAM)

Inflow Area $=145.820$ ac, 24.63% Impervious, Inflow Depth $=2.44$ " for 10-year event
Inflow $=150.54$ cfs @ 12.97 hrs, Volume $=29.698$ af
Outflow $=150.54$ cfs @ 12.97 hrs , Volume $=29.698 \mathrm{af}$, Atten= 0%, Lag $=0.0 \mathrm{~min}$
Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs

Summary for Pond 4AP: EXISTING PARKWAY BASIN

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 147.16' @ 12.41 hrs Surf.Area= 7,002 sf Storage= 7,049 cf
Plug-Flow detention time $=58.8$ min calculated for 0.621 af (100% of inflow)
Center-of-Mass det. time $=59.1 \mathrm{~min}(913.4-854.3$)

Primary OutFlow Max=3.12 cfs @ 12.41 hrs HW=147.16' TW=0.00' (Dynamic Tailwater)
—1=Culvert (Inlet Controls 3.12 cfs @ 3.97 fps)
Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=145.98' TW=0.00' (Dynamic Tailwater)
—2=Broad-Crested Rectangular Weir(Controls 0.00 cfs)

Summary for Pond 4BP: EXISTING PARKWAY BASIN

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 137.30' @ 15.66 hrs Surf.Area= 16,042 sf Storage= 48,608 cf
Plug-Flow detention time $=590.5$ min calculated for 0.438 af (31% of inflow)
Center-of-Mass det. time $=439.8 \mathrm{~min}(1,221.9-782.1)$

Volume	Invert Av	Avail.Storage Stora	orage Description
\#1	132.00' 146	63 cf Cust	age Data (Pr
Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
132.00	1,775	0	0
133.00	4,345	3,060	3,060
134.00	7,050	5,698	8,758
135.00	10,730	8,890	17,648
136.00	13,160	11,945	29,593
137.00	15,450	14,305	43,898
138.00	17,430	16,440	60,338
139.00	19,460	18,445	78,783
140.00	21,550	20,505	99,288
141.00	23,700	22,625	121,913
142.00	25,000	24,350	146,263

Device	Routing	Invert	Outlet Devices
\#1	Primary	136.90'	12.0" Round Culvert
			$\mathrm{L}=98.0^{\prime} \mathrm{RCP}$, end-section conforming to fill, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 136.90' / 135.23' S=0.0170 '/' Cc= 0.900
			$\mathrm{n}=0.013$ Concrete pipe, bends \& connections, Flow Area= 0.79 sf
\#2	Secondary	141.50'	10.0' long x 20.0' breadth Broad-Crested Rectangular Weir
			Head (feet) $0.20 \quad 0.400 .60 \quad 0.801 .001 .201 .401 .60$
			Coef. (English) 2.682 .702 .702 .642 .632 .642 .642 .63

Primary OutFlow Max=0.63 cfs @ 15.66 hrs HW=137.30' TW=0.00' (Dynamic Tailwater)
—1=Culvert (Inlet Controls 0.63 cfs @ 2.15 fps)
Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=132.00' TW=0.00' (Dynamic Tailwater)
—2=Broad-Crested Rectangular Weir(Controls 0.00 cfs)

Summary for Subcatchment 4A:

Runoff $=12.38 \mathrm{cfs} @ 12.09 \mathrm{hrs}$, Volume= $\quad 0.890$ af, Depth= 2.68"
Routed to Pond 4AP : EXISTING PARKWAY BASIN
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 25-year Rainfall=6.20"

Area	ac)	CN	Description			
	340	98	Pavement			
	200	100	Water - Basin			
	440	48	Brush, Good, HSG B			
	980	67	Weighted Average			
	440		61.31\% Pervious Area			
	540		38.69\% Impervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$			Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.0						Direct Entry

Summary for Subcatchment 4B:

$10 "$ RCP pipe was assumed entering main 24 " pipeline and inverts were assumed 0.005 .
24"RCP - inverts assumed 0.005
(2) 48 " RCP were assumed 0.005 invert and only entered as $1-48$ " RCP

60"RCP and last 48" RCP had assumed invert at 0.005
Runoff $=23.45$ cfs @ 12.08 hrs, Volume=
Routed to Pond 4BP : EXISTING PARKWAY BASIN

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 25-year Rainfall=6.20"

Summary for Subcatchment 4C:

Runoff $=58.85$ cfs @ 13.60 hrs, Volume= 16.911 af, Depth= 3.16"
Routed to Reach 4R : DP-4 OLD SWAMP RIVER (UPSTREAM)
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 25-year Rainfall=6.20"

[^11]
Summary for Subcatchment 5A:

Runoff $=72.20$ cfs @ 12.91 hrs, Volume= 14.136 af, Depth= 3.55"
Routed to Reach 5R : DP-5 OLD SWAMP RIVER (DOWNSTREAM)
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 25-year Rainfall=6.20"

[^12]
Summary for Subcatchment 5B:

Runoff = 135.56 cfs @ 12.97 hrs, Volume= $\quad 26.606$ af, Depth= 3.26"
Routed to Reach 5R : DP-5 OLD SWAMP RIVER (DOWNSTREAM)
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 25-year Rainfall=6.20"

Summary for Reach 4R: DP-4 OLD SWAMP RIVER (UPSTREAM)

```
Inflow Area = 72.310 ac, 12.38% Impervious, Inflow Depth = 3.09" for 25-year event
Inflow = 62.26 cfs @ 13.60 hrs, Volume= 18.604 af
Outflow = 62.26 cfs @ 13.60 hrs, Volume= 18.604 af, Atten= 0%, Lag= 0.0 min
```

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs

Summary for Reach 5R: DP-5 OLD SWAMP RIVER (DOWNSTREAM)

Inflow Area $=145.820$ ac, 24.63% Impervious, Inflow Depth $=3.35$ " for 25 -year event
Inflow $=207.66$ cfs @ 12.97 hrs, Volume $=40.743$ af
Outflow = 207.66 cfs @ 12.97 hrs , Volume $=40.743 \mathrm{af}$, Atten $=0 \%$, Lag $=0.0 \mathrm{~min}$
Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs

Summary for Pond 4AP: EXISTING PARKWAY BASIN

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 147.66' @ 12.43 hrs Surf.Area= 7,752 sf Storage= 10,737 cf

Plug-Flow detention time $=54.0 \mathrm{~min}$ calculated for 0.889 af (100% of inflow)
Center-of-Mass det. time $=54.3 \mathrm{~min}(897.9-843.6)$

Primary OutFlow Max=4.11 cfs @ 12.43 hrs HW=147.66' TW=0.00' (Dynamic Tailwater) —1=Culvert (Inlet Controls 4.11 cfs @ 5.23 fps)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=145.98' TW=0.00' (Dynamic Tailwater)
—2=Broad-Crested Rectangular Weir(Controls 0.00 cfs)

Summary for Pond 4BP: EXISTING PARKWAY BASIN

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 137.55' @ 13.62 hrs Surf.Area= 16,545 sf Storage= 52,744 cf
Plug-Flow detention time $=430.2$ min calculated for 0.802 af (45% of inflow)
Center-of-Mass det. time $=306.4 \mathrm{~min}(1,082.6-776.2$)

Primary OutFlow Max=1.49 cfs @ 13.62 hrs HW=137.55' TW=0.00' (Dynamic Tailwater)
—1=Culvert (Inlet Controls 1.49 cfs @ 2.75 fps)
Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=132.00' TW=0.00' (Dynamic Tailwater)
—2=Broad-Crested Rectangular Weir(Controls 0.00 cfs)

Summary for Subcatchment 4A:

Runoff $=18.83$ cfs @ 12.09 hrs, Volume= 1.339 af, Depth= 4.04"
Routed to Pond 4AP : EXISTING PARKWAY BASIN
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 100-year Rainfall=7.90"

Area	(ac)	CN	Description			
1.	340	98	Pavement			
0	200	100	Water - Basin			
	440	48	Brush, Good, HSG B			
	. 980	67	Weighted Average			
	440		61.31\% Pervious Area			
	540		38.69\% Impervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$			Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.0						Direct Entry

Summary for Subcatchment 4B:

$10 "$ RCP pipe was assumed entering main 24 " pipeline and inverts were assumed 0.005 .
24"RCP - inverts assumed 0.005
(2) 48 " RCP were assumed 0.005 invert and only entered as $1-48$ " RCP

60"RCP and last 48" RCP had assumed invert at 0.005

Runoff Routed to Pond 4BP : EXISTING PARKWAY BASIN

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 100-year Rainfall=7.90"

	Area (ac)	CN	Description
*	3.130	98	Pavement
*	0.400	100	Water - Basin Area
0.530	48	Brush, Good, HSG B	
	4.060	92	Weighted Average
	0.530		13.05\% Pervious Area
3.530		86.95\% Impervious Area	

| Tc
 (min) | Length
 (feet) | Slope
 $(\mathrm{ft} / \mathrm{ft})$ | Velocity
 $(\mathrm{ft} / \mathrm{sec})$ |
| ---: | ---: | ---: | ---: | | Capacity |
| ---: |
| (cfs) |\quad Description | Direct Entry, |
| :--- |

Summary for Subcatchment 4C:

Runoff $=86.52$ cfs @ 13.60 hrs , Volume= $\quad 24.673$ af, Depth= 4.61"
Routed to Reach 4R : DP-4 OLD SWAMP RIVER (UPSTREAM)
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 100-year Rainfall=7.90"

Area (ac)	CN	Description	
$*$	3.880	98	Pavement
7.340	55	Woods, Good, HSG B	
2.630	70	Woods, Good, HSG C	
34.020	77	Woods, Good, HSG D	
2.390	48	Brush, Good, HSG B	
1.360	73	Brush, Good, HSG D	
10.650	61	>75\% Grass cover, Good, HSG B	
0.650	74	>75\% Grass cover, Good, HSG C	
1.350	80	$>75 \%$ Grass cover, Good, HSG D	

[^13]
Summary for Subcatchment 5A:

Runoff = 102.90 cfs @ 12.90 hrs, Volume= 20.158 af, Depth= 5.07"
Routed to Reach 5R : DP-5 OLD SWAMP RIVER (DOWNSTREAM)
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 100-year Rainfall=7.90"

[^14]
Summary for Subcatchment 5B:

Runoff $=197.19$ cfs @ 12.91 hrs, Volume= $\quad 38.590$ af, Depth= 4.72"
Routed to Reach 5R : DP-5 OLD SWAMP RIVER (DOWNSTREAM)
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 100-year Rainfall=7.90"

Summary for Reach 4R: DP-4 OLD SWAMP RIVER (UPSTREAM)

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs

Summary for Reach 5R: DP-5 OLD SWAMP RIVER (DOWNSTREAM)

Inflow Area $=145.820$ ac, 24.63% Impervious, Inflow Depth $=4.83$ " for 100 -year event
Inflow $=300.11$ cfs @ 12.90 hrs, Volume $=58.748$ af
Outflow $=300.11 \mathrm{cfs} @ 12.90 \mathrm{hrs}$, Volume $=58.748 \mathrm{af}$, Atten $=0 \%$, Lag $=0.0 \mathrm{~min}$
Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs

Summary for Pond 4AP: EXISTING PARKWAY BASIN

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 148.47' @ 12.46 hrs Surf.Area= 8,987 sf Storage= 17,483 cf
Plug-Flow detention time $=52.7$ min calculated for 1.339 af (100% of inflow)
Center-of-Mass det. time= $52.9 \mathrm{~min}(884.6-831.7)$

Primary OutFlow Max=5.33 cfs @ 12.46 hrs HW=148.47' TW=0.00' (Dynamic Tailwater) —1=Culvert (Inlet Controls 5.33 cfs @ 6.79 fps)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=145.98' TW=0.00' (Dynamic Tailwater)
—2=Broad-Crested Rectangular Weir(Controls 0.00 cfs)

Summary for Pond 4BP: EXISTING PARKWAY BASIN

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 138.19' @ 12.74 hrs Surf.Area= 17,819 sf Storage= 63,713 cf
Plug-Flow detention time $=341.6 \mathrm{~min}$ calculated for 1.370 af (58% of inflow)
Center-of-Mass det. time $=234.3 \mathrm{~min}(1,003.8-769.4)$

Primary OutFlow Max=3.36 cfs @ 12.74 hrs HW=138.19' TW=0.00' (Dynamic Tailwater)
—1=Culvert (Inlet Controls 3.36 cfs @ 4.28 fps)
Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=132.00' TW=0.00' (Dynamic Tailwater)
—2=Broad-Crested Rectangular Weir(Controls 0.00 cfs)

Stormwater Management
Attachment 2: Post-Development HydroCAD Report

Area Listing (all nodes)

Area (acres)	CN	Description (subcatchment-numbers)
24.340	39	$>75 \%$ Grass cover, Good, HSG A (1A, 1B, 1C, 1D, 1E, 1N, 2C, 2D-2, 2E, 21-2)
78.720	61	>75\% Grass cover, Good, HSG B (1F, 1I, 1L, 1M, 2A, 2F, 2G, 2H, 3B)
43.740	74	$>75 \%$ Grass cover, Good, HSG C (1D, 1F, 1I, 1L, 1N, 1O, 1P, 1Q, 2A, 2B, 2C)
18.270	80	$>75 \%$ Grass cover, Good, HSG D (1D, 1G, 1H, 1I, 2E, 2J, 3B)
1.080	85	Artificial Turf (1G, 1H)
14.760	48	Brush, Good, HSG B (1I)
34.880	73	Brush, Good, HSG D (1I, 3A, 3B)
2.560	100	Open Water (1C, 1F, 3B)
79.150	98	Pavement (1A, 1B, 1C, 1F, 1G, 1H, 1J, 2A, 2B, 2C, 2D-1, 2G, 2H, 3A, 3B)
302.140	88	Proposed Development Area (1C, 1D, 1E, 1I, 1K, 1L, 1M, 1N, 1O, 1P, 1Q, 2I-1, 2J,
		2K, 2L, 2M, 21-2)
34.380	98	Roof (2A, 2B, 2G, 2H)
3.740	98	Roofs (1C, 2C)
13.130	30	Woods, Good, HSG A (1D, 2E)
36.730	55	Woods, Good, HSG B (1I, 2F, 3A, 3B)
13.060	70	Woods, Good, HSG C (1D, 2E)
364.050	77	Woods, Good, HSG D (1D, 1E, 1I, 2A, 2E, 2F, 2K, 3A, 3B)
1.620	57	Woods/grass comb., Poor, HSG A (2A)
$\mathbf{1 , 0 6 6 . 3 5 0}$	78	TOTAL AREA

Summary for Subcatchment 1A:

Runoff $=\quad 2.29$ cfs @ 12.09 hrs, Volume $=0.167$ af, Depth= $2.54{ }^{\prime \prime}$
Routed to Pond 1AP : SPORTS COMPLEX INFILTRATION BASIN
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 2-year Rainfall=3.40"

Area	ac)	CN	Description			
0.7	. 710	$\begin{aligned} & 98 \\ & 39 \end{aligned}$	Pavement			
	. 7980	92	Weighted Average 10.13\% Pervious Area 89.87\% Impervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)		Slope (ft/ft)	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description
6.0						Direct Entry

Summary for Subcatchment 1B:

Runoff $=2.53 \mathrm{cfs} @ 12.09 \mathrm{hrs}$, Volume= $\quad 0.183$ af, Depth= 2.45"
Routed to Pond 1BP : SPORTS COMPLEX INFILTRATION BASIN
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 2-year Rainfall=3.40"

Area	ac)	CN	Description			
0.	. 100	$\begin{aligned} & 98 \\ & 39 \end{aligned}$	Pavement			
	. 100	91	Weighted Average 11.11\% Pervious Area 88.89\% Impervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)		Slope (ft/ft)	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description
6.0						Direct Entry

Summary for Subcatchment 1C:

Assumed pipe channel has slope 0.005 since no data given

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= $0.00-72.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 2-year Rainfall=3.40"

[^15]
Summary for Subcatchment 1D:

Runoff $=6.27$ cfs @ 13.15 hrs , Volume= $\quad 1.601$ af, Depth= $0.66{ }^{\prime \prime}$
Routed to Pond 1DP : UPSTREAM DOGLEG
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 2-year Rainfall=3.40"

[^16]
Summary for Subcatchment 1E:

Runoff $=220.01$ cfs @ 12.09 hrs, Volume= 15.659 af, Depth= 1.70" Routed to Pond 1IP : TACAN

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 2-year Rainfall=3.40"

Summary for Subcatchment 1F:

Runoff = 22.57 cfs @ 12.09 hrs, Volume= 1.603 af, Depth= 1.93"
Routed to Pond 1FP : EXISTING PARKWAY BASIN
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 2-year Rainfall=3.40"

Area	ac)	CN	Description			
5	. 070	98	Pavement			
0	410	100	Open Water			
	880	61	>75\% Grass cover, Good, HSG B			
	610	74	>75\% Grass cover, Good, HSG C			
	970	85	Weighted Average			
	490		45.04\% Pervious Area			
	480		54.96\% Impervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Leng (fe		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.0						Direct Entry

Summary for Subcatchment 1G:

Runoff = 5.30 cfs @ 12.39 hrs, Volume= 0.673 af, Depth= 2.54"

Routed to Pond 1GP : SPORTS COMPLEX BASIN
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 2-year Rainfall=3.40"

29.2531 Total

Summary for Subcatchment 1H:

Runoff $=\quad 4.04$ cfs @ 12.08 hrs, Volume= 0.301 af, Depth= 2.74"
Routed to Pond 1HP : SPORTS COMPLEX BASIN
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 2-year Rainfall=3.40"

Summary for Subcatchment 1I:

Runoff $=26.20$ cfs @ 13.51 hrs, Volume $=7.760$ af, Depth= 0.84 "

Routed to Pond 1IP : TACAN
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 2-year Rainfall=3.40"

[^17]
Summary for Subcatchment 1J:

Runoff = 14.87 cfs @ 12.08 hrs, Volume= 1.188 af, Depth= 3.17"
Routed to Pond 1LP : CENTRAL GREENWAY
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 2-year Rainfall=3.40"

	Area (ac)	CN	Description
*	4.500	98	Pavement
	4.500		100.00\% Impervious Area

| Tc
 (min) | Length
 (feet) | Slope
 $(\mathrm{ft} / \mathrm{ft})$ | Velocity
 $(\mathrm{ft} / \mathrm{sec})$ | Capacity
 (cfs) |
| ---: | ---: | ---: | ---: | :--- | Description | Direct Entry, |
| :--- |

Summary for Subcatchment 1K:

Runoff $=64.29$ cfs @ 12.14 hrs, Volume= 5.252 af, Depth= 2.18"
Routed to Pond 1LP : CENTRAL GREENWAY
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 2-year Rainfall=3.40"

Area	ac)	Description			
28.940		Proposed Development Area			
	940	100.	00\% Perv	us Area	
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
10.0					Direct Entry

Summary for Subcatchment 1L:

Runoff $=61.62$ cfs @ 12.14 hrs, Volume= $\quad 5.015$ af, Depth= 2.01"
Routed to Pond 1LP : CENTRAL GREENWAY
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 2-year Rainfall=3.40"

Summary for Subcatchment 1M:

Runoff $=20.36$ cfs @ 12.14 hrs, Volume= 1.656 af, Depth= 1.93"
Routed to Pond 1MP : CENTRAL GREENWAY
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Type III 24-hr 2-year Rainfall=3.40"

Summary for Subcatchment 1N:

Assumed slope of 0.002
Runoff $=\quad 51.89 \mathrm{cfs}$ @ 12.14 hrs, Volume=
Routed to Pond 1 NP : WEST GREENWAY

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 2-year Rainfall=3.40"

Summary for Subcatchment 10:

Runoff = 18.63 cfs @ 12.09 hrs, Volume= 1.327 af, Depth= 2.09"
Routed to Pond 1OP : WEST GREENWAY
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Type III 24-hr 2-year Rainfall=3.40"

Summary for Subcatchment 1P:

Runoff = 46.73 cfs @ 12.09 hrs, Volume= 3.329 af, Depth= 2.09"
Routed to Pond 1PP : WEST GREENWAY
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 2-year Rainfall=3.40"

Area	(ac)	CN	Des	cription		
$\begin{array}{r} 17.420 \\ 1.670 \\ \hline \end{array}$		88	Proposed Development Area$>75 \%$ Grass cover, Good, HSG C			
		74				
19.090		87	Weighted Average 100.00\% Pervious Area			
	090					
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Len (fe		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.0						Direct Entry

Summary for Subcatchment 1Q:

Runoff $=\quad 41.44$ cfs @ 12.09 hrs , Volume= $\quad 2.953$ af, Depth= 2.09"
Routed to Pond 1QP : WEST GREENWAY
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Type III 24-hr 2-year Rainfall=3.40"

Area	(ac)	CN	Des	cription		
$\begin{array}{r} 15.260 \\ 1.670 \\ \hline \end{array}$		88	Proposed Development Area$>75 \%$ Grass cover, Good, HSG C			
		74				
16.930		87	Weighted Average			
16.930			100.00\% Pervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Len (fe		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.0						Direct Entry

Summary for Subcatchment 2A:

Runoff $=61.33$ cfs @ 13.40 hrs, Volume $=16.037$ af, Depth= 1.36"
Routed to Pond 2AP : FRENCH'S STREAM WEST BRANCH
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 2-year Rainfall=3.40"

Summary for Subcatchment 2B:

Runoff = 125.27 cfs @ 12.08 hrs, Volume= 9.333 af, Depth= 2.74"
Routed to Pond 2BP : EXISTING BASIN
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Type III 24-hr 2-year Rainfall=3.40"

Summary for Subcatchment 2C:

Runoff $=40.71$ cfs @ 12.08 hrs, Volume $=$
Routed to Pond 2CP : EXISTING PARKWAY BASIN
3.121 af, Depth= 2.95"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 2-year Rainfall=3.40"

Area (ac)	CN	Description			
10.340	98	Pavement			
1.680	98	Roofs			
0.400	39	>75\% Grass cover, Good, HSG A			
0.290	74	>75\% Grass cover, Good, HSG C			
12.710	96	Weighted Average			
0.690		5.43\% Pervious Area			
12.020		94.57\% Impervious Area			
$\begin{array}{rr} \text { Tc } & \text { Length } \\ (\mathrm{min}) & \text { (feet } \end{array}$		Slope (ft/ft)	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \\ \hline \end{array}$	Description
6.0					Direct Entry

Summary for Subcatchment 2D-1:

Runoff $=6.94$ cfs @ 12.08 hrs, Volume= 0.554 af, Depth= 3.17"
Routed to Pond 2DP : EXISTING PARKWAY BASIN
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 2-year Rainfall=3.40"

| | Area (ac) | CN |
| ---: | ---: | :--- | Description \quad| * 2.100 |
| :--- |
| 2.100 |

| Tc
 (min) | Length
 (feet) | Slope
 $(\mathrm{ft} / \mathrm{ft})$ | Velocity
 $(\mathrm{ft} / \mathrm{sec})$ | Capacity
 (cfs) |
| ---: | ---: | ---: | ---: | :--- | Description | Direct Entry, |
| :--- |

Summary for Subcatchment 2D-2:

Runoff $=0.00$ cfs @ 23.42 hrs, Volume= 0.000 af, Depth= 0.00"
Routed to Pond 2DP : EXISTING PARKWAY BASIN
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 2-year Rainfall=3.40"

Area (ac)	CN	Description
0.670	39	$>75 \%$ Grass cover, Good, HSG A
0.670		100.00% Pervious Area

| Tc
 (min) | Length
 (feet) | Slope
 $(\mathrm{ft} / \mathrm{ft})$ | Velocity
 $(\mathrm{ft} / \mathrm{sec})$ |
| ---: | ---: | ---: | ---: | | Capacity |
| ---: |
| (cfs) |\quad Description | Direct Entry, |
| :--- |

Summary for Subcatchment 2E:

Runoff $=8.30 \mathrm{cfs} @ 13.39 \mathrm{hrs}$, Volume= $\quad 2.499 \mathrm{af}$, Depth= $0.61^{\prime \prime}$
Routed to Pond 2EP : FRENCH'S STREAM WEST BRANCH
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Type III 24-hr 2-year Rainfall=3.40"

89.9 1,134 Total

Summary for Subcatchment 2F:

Runoff $=16.19 \mathrm{cfs}$ @ 13.06 hrs, Volume $=\quad 3.855$ af, Depth= $0.75{ }^{\prime \prime}$
Routed to Pond 2FP : FRENCH'S STREAM WEST BRANCH
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 2-year Rainfall=3.40"

$70.4 \quad 775$ Total

Summary for Subcatchment 2G:

Assumed Tc value
Runoff $=\quad 10.95 \mathrm{cfs} @ 13.60$ hrs, Volume $=$
Routed to Pond 2AP : FRENCH'S STREAM WEST BRANCH

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 2-year Rainfall=3.40"

Summary for Subcatchment 2H:

Assumed Tc value
Runoff $=4.32$ cfs @ 13.60 hrs, Volume $=$
Routed to Pond 2AP : FRENCH'S STREAM WEST BRANCH

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 2-year Rainfall=3.40"

Summary for Subcatchment 21-1:

Runoff $=53.05$ cfs @ 12.14 hrs, Volume $=\quad 4.334$ af, Depth= 2.18"
Routed to Pond 2IP : PROPOSED PHASE 1 BASIN
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 2-year Rainfall=3.40"

Area	ac) C	Description			
* 23.880		Proposed Development Area			
	880	100.	00\% Perv	us Area	
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity (ft/sec)	Capacity (cfs)	Description
10.0					Direct Entry

Summary for Subcatchment 2J:

Runoff $=38.48$ cfs @ 12.09 hrs, Volume= 2.742 af, Depth= 2.09"
Routed to Pond 2JP : PROPOSED BASIN
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 2-year Rainfall=3.40"

Area	(ac)	CN	Des	cription		
$\begin{array}{r} 14.430 \\ 1.290 \\ \hline \end{array}$		$\begin{aligned} & \hline 88 \\ & 80 \end{aligned}$	Proposed Development Area$>75 \%$ Grass cover, Good, HSG D			
$\begin{aligned} & 15.720 \\ & 15.720 \end{aligned}$		87	Weighted Average 100.00\% Pervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)		Slope (ft/ft)	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description
6.0						Direct Entry

Summary for Subcatchment 2K:

Runoff = 45.61 cfs @ 12.09 hrs, Volume= 3.239 af, Depth= 1.85"
Routed to Pond 2KP : PROPOSED BASIN
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Type III 24-hr 2-year Rainfall=3.40"

Area	(ac)	CN	Des	cription		
$\begin{array}{r} 12.610 \\ 8.390 \end{array}$		$\begin{aligned} & 88 \\ & 77 \end{aligned}$	Proposed Development Area Woods, Good, HSG D			
$\begin{aligned} & 21.000 \\ & 21.000 \end{aligned}$		84	Weighted Average 100.00\% Pervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)		Slope (ft/ft)	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description
6.0						Direct Entry

Summary for Subcatchment 2L:

Runoff $=\quad 27.16$ cfs @ 12.09 hrs, Volume= 1.940 af, Depth= 2.18"
Routed to Pond 2LP : PROPOSED BASIN
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Type III 24-hr 2-year Rainfall=3.40"

Area (ac)	CN	Description
*	10.690	88
10.690		Proposed Development Area

| Tc
 (min) | Length
 (feet) | Slope
 $(\mathrm{ft} / \mathrm{ft})$ | Velocity
 $(\mathrm{ft} / \mathrm{sec})$ | Capacity
 (cfs) |
| ---: | ---: | ---: | ---: | :--- | Description | Direct Entry, |
| :--- |

Summary for Subcatchment 2M:

Runoff $=\quad 49.15 \mathrm{cfs} @ 12.09 \mathrm{hrs}$, Volume= $\quad 3.512 \mathrm{af}$, Depth= 2.18"
Routed to Pond 2MP : PROPOSED BASIN
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Type III 24-hr 2-year Rainfall=3.40"

Area (ac)	CN	Description
19.350	88	Proposed Development Area
		100.00% Pervious Area

| Tc
 (min) | Length
 (feet) | Slope
 $(\mathrm{ft} / \mathrm{ft})$ | Velocity
 $(\mathrm{ft} / \mathrm{sec})$ | Capacity
 (cfs) |
| ---: | ---: | ---: | ---: | :--- | Description | Direct Entry, |
| :--- |

Summary for Subcatchment 3A:

Runoff $=34.70$ cfs @ 13.05 hrs, Volume= $\quad 7.325$ af, Depth= 1.42"
Routed to Pond 3AP : FRENCH'S STREAM EAST BRANCH
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 2-year Rainfall=3.40"

74.8 1,438 Total

Summary for Subcatchment 3B:

Runoff $=51.95 \mathrm{cfs} @ 13.44 \mathrm{hrs}$, Volume= $\quad 14.215$ af, Depth= 1.29"
Routed to Pond 3BP : FRENCH'S STREAM EAST BRANCH
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 2-year Rainfall=3.40"

Summary for Subcatchment 21-2:

Runoff $=\quad 9.60$ cfs @ 12.15 hrs , Volume= $\quad 0.875$ af, Depth= $0.89^{\prime \prime}$
Routed to Pond 2IP : PROPOSED PHASE 1 BASIN
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 2-year Rainfall=3.40"

Summary for Reach 1R: DP-1 TACAN OUTFALL

```
Inflow Area = 377.860 ac, 3.40% Impervious, Inflow Depth > 1.55" for 2-year event
Inflow = 54.18 cfs @ 15.01 hrs, Volume= 48.916 af
Outflow = 54.18 cfs @ 15.01 hrs, Volume= 48.916 af, Atten= 0%, Lag= 0.0 min
    Routed to Pond 2FP : FRENCH'S STREAM WEST BRANCH
Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
```

Summary for Reach 2R: DP-2 FRENCH'S STREAM WEST BRANCH
Inflow Area $=872.630$ ac, 11.83% Impervious, Inflow Depth > 1.39" for 2-year event
Inflow $=175.24$ cfs @ 13.78 hrs, Volume $=101.076$ af
Outflow $=175.24$ cfs @ 13.78 hrs , Volume $=101.076 \mathrm{af}$, Atten $=0 \%$, Lag $=0.0 \mathrm{~min}$
Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs

Summary for Reach 3R: DP-3 FRENCH'S STREAM EAST BRANCH

```
Inflow Area = 193.720 ac, 8.56% Impervious, Inflow Depth = 1.33" for 2-year event
Inflow = 76.28 cfs @ 13.59 hrs, Volume= 21.534 af
Outflow = 76.28 cfs @ 13.59 hrs, Volume= 21.534 af, Atten= 0%, Lag= 0.0 min
```

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs

Summary for Pond 1AP: SPORTS COMPLEX INFILTRATION BASIN

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 170.39' @ 12.37 hrs Surf.Area= 2,201 sf Storage= 2,430 cf
Plug-Flow detention time $=125.1$ min calculated for 0.167 af (100% of inflow)
Center-of-Mass det. time= 125.1 min (920.7-795.6)

Volume	Invert	Avail.Storage	Storage Description
\#1A	168.50'	1,559 cf	24.83'W x 88.64'L x 2.33'H Field A
			5,136 cf Overall - 1,238 cf Embedded = 3,898 cf x 40.0\% Voids
\#2A	169.00'	1,238 cf	ADS_StormTech SC-310 +Capx 84 Inside \#1
			Effective Size $=28.9$ "W x 16.0"H => $2.07 \mathrm{sf} \times 7.12^{\prime} \mathrm{L}=14.7 \mathrm{cf}$
			Overall Size $=34.0$ "W $\times 16.0^{\prime \prime} \mathrm{H} \times 7.56{ }^{\text {'L }}$ with 0.44 ' Overlap
			84 Chambers in 7 Rows
\#3	168.50'	85 cf	4.00'D x 6.80'H CB-Impervious
\#4	175.20'	449 cf	Ponding at CB (Prismatic)Listed below (Recalc)

> 3,332 cf Total Available Storage

Storage Group A created with Chamber Wizard

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
175.20	10	0	0
176.00	300	124	124
176.50	1,000	325	449

Device	Routing	Invert	Outlet Devices
\#1	Primary	170.00'	18.0" Round Culvert
			$\mathrm{L}=13.0{ }^{\prime}$ RCP, end-section conforming to fill, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 170.00' / 169.85' S=0.0115 '/' Cc= 0.900 $\mathrm{n}=0.013$. Flow Area $=1.77 \mathrm{sf}$
\#2	Discarded	168.50'	2.410 in/hr Exfiltration over Surface area Phase-In= 0.01'

Discarded OutFlow Max=0.12 cfs @ 11.44 hrs HW=168.58' (Free Discharge) ${ }_{2=\text { Exfiltration (Exfiltration Controls }}$ (0.12 cfs)
L2=Exfiltration (Exfiltration Controls 0.12 cfs)
Primary OutFlow Max=0.66 cfs @ 12.37 hrs HW=170.39' TW=151.40' (Dynamic Tailwater)
L-1=Culvert (Barrel Controls 0.66 cfs @ 2.72 fps)

Pond 1AP: SPORTS COMPLEX INFILTRATION BASIN - Chamber Wizard Field A
Chamber Model = ADS_StormTechSC-310 +Cap (ADS StormTech®SC-310 with cap length)
Effective Size $=28.9$ "W $\times 16.0^{\prime \prime} \mathrm{H}=>2.07 \mathrm{sf} \times 7.12^{\prime} \mathrm{L}=14.7 \mathrm{cf}$
Overall Size $=34.0$ "W x 16.0"H x $7.56^{\prime} \mathrm{L}$ with 0.44 ' Overlap
34.0" Wide $+6.0^{\prime \prime}$ Spacing $=40.0$ " C-C Row Spacing

12 Chambers/Row x 7.12' Long +0.60' Cap Length $x 2=86.64$ ' Row Length $+12.0^{\prime \prime}$ End Stone $\times 2=88.64 '$ Base Length
7 Rows x 34.0" Wide + 6.0" Spacing x $6+12.0$ " Side Stone x 2 = 24.83' Base Width
6.0" Stone Base + 16.0" Chamber Height $+6.0^{\prime \prime}$ Stone Cover $=2.33^{\prime}$ Field Height

84 Chambers $\times 14.7$ cf $=1,238.3$ cf Chamber Storage
5,136.2 cf Field $-1,238.3$ cf Chambers $=3,897.9$ cf Stone $\times 40.0 \%$ Voids $=1,559.1$ cf Stone Storage
Chamber Storage + Stone Storage $=2,797.5 \mathrm{cf}=0.064$ af
Overall Storage Efficiency = 54.5\%
Overall System Size $=88.64^{\prime} \times 24.83^{\prime} \times 2.33^{\prime}$
84 Chambers
190.2 cy Field
144.4 cy Stone

Summary for Pond 1BP: SPORTS COMPLEX INFILTRATION BASIN

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 170.82' @ 12.33 hrs Surf.Area= 2,378 sf Storage= 2,564 cf
Plug-Flow detention time $=124.3 \mathrm{~min}$ calculated for 0.183 af (100% of inflow)
Center-of-Mass det. time= 124.3 min (924.5-800.2)

Volume	Invert	Avail.Storage	Storage Description
\#1A	169.00'	1,683 cf	24.83'W x 95.76'L x 2.33 'H Field A
			5,549 cf Overall - 1,342 cf Embedded = 4,207 cf $\times 40.0 \%$ Voids
\#2A	169.50'	1,342 cf	ADS_StormTech SC-310 +Capx 91 Inside \#1
			Effective Size $=28.9$ "W x 16.0"H $=>2.07 \mathrm{sf} \times 7.12 \mathrm{~L}=14.7$
			Overall Size $=34.0$ " $\mathrm{W} \times 16.0$ " $\mathrm{H} \times 7.56$ 'L with $0.44{ }^{\text {' O O }}$ Oerlap
			91 Chambers in 7 Rows
\#3	$169.00{ }^{\prime}$	72 cf	4.00'D x 5.70'H CB-Impervious
\#4	172.70'	572 cf	Ponding at CB (Prismatic)Listed below (Recalc)

> 3,668 cf Total Available Storage

Storage Group A created with Chamber Wizard

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
172.70	10	0	0
173.00	300	47	47
174.50	400	525	572

Device	Routing	Invert	Outlet Devices
\#1	Primary	170.50'	12.0" Round Culvert X 2.00
			$\mathrm{L}=23.0$ ' RCP, end-section conforming to fill, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 170.50' / 170.20' S=0.0130 '/' Cc= 0.900
\#2	Discarded	169.00'	$2.410 \mathrm{in} / \mathrm{hr}$ Exfiltration over Surface area Phase-In= $0.01{ }^{\prime}$

Discarded OutFlow Max=0.13 cfs @ $11.38 \mathrm{hrs} \mathrm{HW}=169.06$ ' (Free Discharge) ${ }_{2=\text { Exfiltration (Exfiltration Controls }}$ (0.13 cfs)
L2=Exfiltration (Exfiltration Controls 0.13 cfs)
Primary OutFlow Max=0.84 cfs @ 12.33 hrs HW=170.82' TW=151.29' (Dynamic Tailwater)
L-1=Culvert (Barrel Controls 0.84 cfs @ 2.85 fps)

Pond 1BP: SPORTS COMPLEX INFILTRATION BASIN - Chamber Wizard Field A
Chamber Model = ADS_StormTechSC-310 +Cap (ADS StormTech®SC-310 with cap length)
Effective Size $=28.9$ "W $\times 16.0^{\prime \prime} \mathrm{H}=>2.07 \mathrm{sf} \times 7.12$ 'L $=14.7 \mathrm{cf}$
Overall Size $=34.0$ "W x 16.0"H x $7.56^{\prime} \mathrm{L}$ with 0.44 ' Overlap
34.0" Wide +6.0 " Spacing $=40.0$ " C-C Row Spacing

13 Chambers/Row x 7.12' Long +0.60' Cap Length $x 2=93.76$ ' Row Length $+12.0^{\prime \prime}$ End Stone $\times 2=95.76^{\prime}$ Base Length
7 Rows x 34.0" Wide + 6.0" Spacing x 6 + 12.0" Side Stone x 2 = 24.83' Base Width
6.0" Stone Base + 16.0" Chamber Height $+6.0^{\prime \prime}$ Stone Cover $=2.33$ ' Field Height

91 Chambers $\times 14.7$ cf $=1,341.5$ cf Chamber Storage
$5,548.8$ cf Field $-1,341.5$ cf Chambers $=4,207.2$ cf Stone $\times 40.0 \%$ Voids $=1,682.9$ cf Stone Storage
Chamber Storage + Stone Storage $=3,024.4 \mathrm{cf}=0.069 \mathrm{af}$
Overall Storage Efficiency $=54.5 \%$
Overall System Size $=95.76^{\prime} \times 24.83^{\prime} \times 2.33^{\prime}$
91 Chambers
205.5 cy Field
155.8 cy Stone

Summary for Pond 1CP: MEMORIAL GROVE AVE. BASIN

Assumed slope of 0.005 for outlet culvert.

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 152.58' @ 13.25 hrs Surf.Area= 61,121 sf Storage= 138,842 cf
Plug-Flow detention time $=171.7$ min calculated for 8.213 af (99% of inflow)
Center-of-Mass det. time $=166.5 \mathrm{~min}(1,020.8-854.3)$

Primary OutFlow Max=20.41 cfs @ 13.25 hrs HW=152.58' TW=144.75' (Dynamic Tailwater)
L1=Culvert (Barrel Controls 20.41 cfs @ 5.61 fps)
Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=150.00' TW=142.50' (Dynamic Tailwater)
L-2=Broad-Crested Rectangular Weir(Controls 0.00 cfs)

Summary for Pond 1DP: UPSTREAM DOGLEG

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 144.75' @ 13.19 hrs Surf.Area= 1,257 sf Storage= 676 cf
Plug-Flow detention time $=0.3 \mathrm{~min}$ calculated for 9.814 af (100% of inflow)
Center-of-Mass det. time $=0.3 \mathrm{~min}(1,010.4-1,010.1)$

Device Routing Invert Outlet Devices
\#1 Primary 142.60' 42.0" Round Culvert

L= 782.0' RCP, end-section conforming to fill, $\mathrm{Ke}=0.500$ Inlet / Outlet Invert= 142.60' / 142.26' S=0.0004 '/' Cc= 0.900 $n=0.013$, Flow Area $=9.62$ sf
\#2 Secondary
142.50' 42.0" Round Culvert
$\mathrm{L}=782.0^{\prime}$ RCP, end-section conforming to fill, $\mathrm{Ke}=0.500$ Inlet / Outlet Invert= 142.50' / 142.19' S=0.0004 '// Cc=0.900 $\mathrm{n}=0.013$, Flow Area $=9.62 \mathrm{sf}$

Primary OutFlow Max=12.84 cfs @ 13.19 hrs HW=144.75' TW=140.76' (Dynamic Tailwater)
L-1=Culvert (Barrel Controls 12.84 cfs @ 2.96 fps)
Secondary OutFlow Max=13.78 cfs @ 13.19 hrs HW=144.75' TW=140.76' (Dynamic Tailwater)
—2=Culvert (Barrel Controls 13.78 cfs @ 3.00 fps)

Summary for Pond 1FP: EXISTING PARKWAY BASIN

Primary Culvert - Assumed Inverts, pipe diameter, and pipe material.

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 146.69' @ 24.07 hrs Surf.Area= 23,631 sf Storage= 68,602 cf
Plug-Flow detention time $=1,252.5 \mathrm{~min}$ calculated for 0.113 af (7% of inflow)
Center-of-Mass det. time $=1,052.7 \mathrm{~min}(1,876.1-823.4)$

Primary OutFlow Max=0.16 cfs @ 24.07 hrs HW=146.69' TW=135.32' (Dynamic Tailwater)
-1=Culvert (Barrel Controls 0.16 cfs @ 1.62 fps)
Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=143.00' TW=133.50' (Dynamic Tailwater)
$\complement_{2=B r o a d-C r e s t e d ~ R e c t a n g u l a r ~ W e i r(~ C o n t r o l s ~} 0.00 \mathrm{cfs}$)

Summary for Pond 1GP: SPORTS COMPLEX BASIN

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 168.31' @ 12.62 hrs Surf.Area= 2,853 sf Storage= 3,949 cf

Plug-Flow detention time $=29.9$ min calculated for 0.666 af (99% of inflow)
Center-of-Mass det. time $=22.5 \mathrm{~min}(839.6-817.1)$

Primary OutFlow Max=3.97 cfs @ 12.62 hrs HW=168.31' TW=148.95' (Dynamic Tailwater)
—1=Culvert (Barrel Controls 3.97 cfs @ 5.06 fps)
Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=166.00' TW=146.00' (Dynamic Tailwater)
L2=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Pond 1HP: SPORTS COMPLEX BASIN

 Routed to Pond 1LP : CENTRAL GREENWAY

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 163.57' @ 12.14 hrs Surf.Area= 823 sf Storage= 816 cf
Plug-Flow detention time= 12.1 min calculated for 0.299 af (99% of inflow)
Center-of-Mass det. time $=7.7 \mathrm{~min}(792.9-785.1)$

Primary OutFlow Max=3.21 cfs @ 12.14 hrs HW=163.56' TW=148.54' (Dynamic Tailwater)
-1=Culvert (Barrel Controls 3.21 cfs @ 4.09 fps)
Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=161.00' TW=146.00' (Dynamic Tailwater)
L2=Broad-Crested Rectangular Weir (Controls 0.00 cfs) $^{\text {2 }}$

Summary for Pond 1IP: TACAN

 Routed to Reach 1R : DP-1 TACAN OUTFALL

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 142.92' @ 15.01 hrs Surf.Area= 372,066 sf Storage= 646,032 cf
Plug-Flow detention time $=119.7$ min calculated for 48.910 af (100% of inflow)
Center-of-Mass det. time=119.6 min (1,039.2-919.6)

Primary OutFlow Max=54.18 cfs @ 15.01 hrs HW=142.92' TW=0.00' (Dynamic Tailwater)
$L_{1}=$ Culvert (Passes 54.18 cfs of 383.77 cfs potential flow)
-2=Low Flow Orifice (Orifice Controls 54.18 cfs @ 13.54 fps)
$-3=$ Custom Weir/Orifice (Controls 0.00 cfs)

Summary for Pond 1LP: CENTRAL GREENWAY

 Routed to Pond 1MP : CENTRAL GREENWAY

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 149.07' @ 12.43 hrs Surf.Area= 59,905 sf Storage $=117,720$ cf

Plug-Flow detention time $=42.1 \mathrm{~min}$ calculated for 12.413 af (100% of inflow)
Center-of-Mass det. time= $42.2 \mathrm{~min}(856.3-814.1)$

Volume	Invert Avail.Storage Storage Description		
\#1	146.00' 3	397,457 cf Custo	tage Data (Prismatic)Listed below (Recalc)
Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
146.00	17,910	0	0
147.00	30,745	24,328	24,328
148.00	44,380	37,563	61,890
149.00	58,820	51,600	113,490
150.00	74,055	66,438	179,928
151.00	90,090	82,073	262,000
152.00	96,730	93,410	355,410
152.42	103,495	42,047	397,457

Device	Routing	Invert	Outlet Devices
\#1	Primary	146.00'	42.0" Round Culvert X 2.00
			$\mathrm{L}=160.0^{\prime}$ RCP, end-section conforming to fill, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 146.00' / 145.00' S=0.0063 '/' Cc= 0.900
			$\mathrm{n}=0.013$ Concrete pipe, bends \& connections, Flow Area= 9.62 sf
\#2	Secondary	152.00'	130.0' long x 50.0' breadth Broad-Crested Rectangular Weir
			Head (feet) $0.20 \quad 0.400 .600 .801 .001 .201 .401 .60$
			Coef. (English) 2.682 .702 .702 .642 .632 .642 .642 .63

Primary OutFlow Max=68.14 cfs @ 12.25 hrs HW=148.93' TW=147.91' (Dynamic Tailwater)
—1=Culvert (Outlet Controls 68.14 cfs @ 5.36 fps)
Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=146.00' TW=145.00' (Dynamic Tailwater)
L2=Broad-Crested Rectangular Weir(Controls 0.00 cfs$)$

Summary for Pond 1MP: CENTRAL GREENWAY

Inflow Area =	78.180 ac	9.40\% Impervious,	2.10	for 2-year event
Inflow	85.66 cfs @	12.20 hrs , Volume=	14.071 af	
Outflow	59.95 cfs @	12.56 hrs , Volume=	14.067 af , At	Atten $=30 \%$, Lag $=21.5 \mathrm{~min}$
Primary =	59.95 cfs @ d 1IP : TACA	12.56 hrs , Volume= N	14.067 af	
Secondary = Routed to	$\begin{aligned} & 0.00 \mathrm{cfs} @ \\ & \text { id } 1 \mathrm{IP} \text { : TACA } \end{aligned}$	0.00 hrs , Volume=	0.000 af	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 148.40' @ 12.56 hrs Surf.Area= 37,695 sf Storage= $77,753 \mathrm{cf}$
Plug-Flow detention time $=27.3 \mathrm{~min}$ calculated for 14.067 af (100% of inflow)
Center-of-Mass det. time $=26.7 \mathrm{~min}(879.5-852.8)$

Primary OutFlow Max=59.95 cfs @ 12.56 hrs HW=148.40' TW=141.63' (Dynamic Tailwater)
—1=Culvert (Inlet Controls 59.95 cfs @ 6.28 fps)
Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=145.00' TW=133.50' (Dynamic Tailwater)
—2=Broad-Crested Rectangular Weir(Controls 0.00 cfs)

Summary for Pond 1NP: WEST GREENWAY

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 148.91' @ 12.72 hrs Surf.Area= 59,740 sf Storage= 86,123 cf
Plug-Flow detention time $=208.8$ min calculated for 4.189 af (99% of inflow)
Center-of-Mass det. time $=203.9 \mathrm{~min}(1,027.5-823.6)$

Primary OutFlow Max=8.50 cfs @ 12.68 hrs HW=148.91' TW=148.37' (Dynamic Tailwater)
-1=Culvert (Outlet Controls 8.50 cfs @ 3.53 fps)
Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=147.00' TW=146.00' (Dynamic Tailwater)
$\complement_{2=B r o a d-C r e s t e d ~ R e c t a n g u l a r ~ W e i r(~ C o n t r o l s ~} 0.00$ cfs)

Summary for Pond 10P: WEST GREENWAY

Inflow Area =	32.820 a	0.00\% Impervious,	,	for 2-year event
Inflow	21.92 cfs @	12.09 hrs , Volume=	5.516 af	
Outflow	11.17 cfs @	12.38 hrs , Volume=	5.512 af, A	Atten $=49 \%$, Lag $=17.4 \mathrm{~min}$
Primary =	11.17 cfs @ d 1PP : WEST	12.38 hrs , Volume= T GREENWAY	5.512 af	
Secondary = Routed to	$\begin{aligned} & 0.00 \text { cfs @ } \\ & \text { 1PP : WES } \end{aligned}$	0.00 hrs , Volume= GREENWAY	0.000 af	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 148.38' @ 12.84 hrs Surf.Area= 12,406 sf Storage= 18,185 cf
Plug-Flow detention time $=31.6 \mathrm{~min}$ calculated for 5.511 af (100% of inflow)
Center-of-Mass det. time $=29.3 \mathrm{~min}(1,006.0-976.7)$

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	146.00^{\prime}	110,744 cf	Custom Stage Data (Prismatic)Listed below (Recalc)

Elevation (feet)	Surf.Area $($ sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
146.00	3,480	0	0
147.00	6,760	5,120	5,120
148.00	10,685	8,723	13,843
149.00	15,260	12,973	26,815
150.00	20,485	17,873	44,688
151.00	28,355	24,420	69,108
152.00	29,175	28,765	97,873
152.42	32,120	12,872	110,744

Device	Routing	Invert	Outlet Devices
\#1	Primary	146.00'	24.0" Round Culvert
			$\mathrm{L}=140.0$ ' RCP, end-section conforming to fill, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 146.00' / 145.50' S=0.0036 '/' Cc= 0.900
			$\mathrm{n}=0.013$ Concrete pipe, bends \& connections, Flow Area= 3.14 sf
\#2	Secondary	152.00'	115.0' long x 50.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.200 .400 .600 .801 .001 .201 .401 .60
			Coef. (English) 2.682 .702 .702 .642 .632 .642 .642 .63

Primary OutFlow Max=11.07 cfs @ 12.38 hrs HW=148.27' TW=147.60' (Dynamic Tailwater)
—1 $^{1=C u l v e r t ~(O u t l e t ~ C o n t r o l s ~} 11.07$ cfs @ 3.89 fps)
Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=146.00' TW=145.00' (Dynamic Tailwater)
L2=Broad-Crested Rectangular Weir(Controls 0.00 cfs)

Summary for Pond 1PP: WEST GREENWAY

Inflow Area =Inflow =	51.910 ac, 0.00\% Impervious, Inflow Depth > 2.04" for 2-year event			
	56.13 cfs @	12.09 hrs , Volume=	8.841 af	
Outflow	14.41 cfs @	13.48 hrs , Volume=	8.807 af, A	Atten $=74 \%$, Lag $=83.1 \mathrm{~min}$
Primary = Routed to	$\begin{aligned} & 14.41 \text { cfs @ } \\ & \text { d 1QP : WES } \end{aligned}$	13.48 hrs , Volume= T GREENWAY	8.807 af	
Secondary = Routed to	$\begin{aligned} & 0.00 \mathrm{cfs} @ \\ & 1 \text { QP :WES } \end{aligned}$	0.00 hrs , Volume= GREENWAY	0.000 af	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 147.83' @ 13.08 hrs Surf.Area= 45,219 sf Storage= $82,150 \mathrm{cf}$
Plug-Flow detention time $=107.6$ min calculated for 8.806 af (100% of inflow)
Center-of-Mass det. time $=98.3 \mathrm{~min}(1,032.8-934.6)$

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	145.00	319,950 cf	Custom Stage Data (Prismatic)Listed below (Recalc)

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
145.00	13,590	0	0
146.00	24,145	18,868	18,868
147.00	35,350	29,748	48,615
148.00	47,205	41,278	89,893
149.00	59,705	53,455	143,348
150.00	72,855	66,280	209,628
151.00	78,910	75,883	285,510
151.42	85,090	34,440	319,950

Device	Routing	Invert	Outlet Devices
\#1	Primary	145.00'	24.0" Round Culvert
			$\mathrm{L}=188.0$ ' RCP, end-section conforming to fill, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 145.00' 144.50 ' S=0.0027 '/' Cc= 0.900
			$\mathrm{n}=0.013$ Concrete pipe, bends \& connections, Flow Area=3.14 sf
\#2	Secondary	151.00'	115.0' long x 50.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.200 .400 .600 .801 .001 .201 .401 .60
			Coef. (English) 2.682 .702 .702 .642 .632 .642 .642 .63

Primary OutFlow Max=14.41 cfs @ 13.48 hrs HW=147.81' TW=146.56' (Dynamic Tailwater)
—1 $^{1=C u l v e r t ~(O u t l e t ~ C o n t r o l s ~} 14.41$ cfs @ 4.59 fps)
Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=145.00' TW=144.00' (Dynamic Tailwater)
L2=Broad-Crested Rectangular Weir(Controls 0.00 cfs)

Summary for Pond 1QP: WEST GREENWAY

Inflow Area =	68.840 ac	0.00\% Impervious,	,	for 2-year event
Inflow	51.18 cfs @	12.09 hrs , Volume=	11.759 af	
Outflow	20.55 cfs @	12.56 hrs, Volume=	11.318 af, At	Atten $=60 \%$, Lag $=28.2 \mathrm{~min}$
Primary =	20.55 cfs @ d 1IP: TACA	12.56 hrs , Volume= N	11.318 af	
Secondary = Routed to	$0.00 \mathrm{cfs} @$	0.00 hrs , Volume=	0.000 af	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 146.66' @ 12.56 hrs Surf.Area= 43,146 sf Storage= 74,424 cf
Plug-Flow detention time $=110.8$ min calculated for 11.317 af (96% of inflow)
Center-of-Mass det. time $=66.7 \mathrm{~min}(1,045.2-978.5)$

Primary OutFlow Max=20.55 cfs @ 12.56 hrs HW=146.66' TW=141.63' (Dynamic Tailwater)
L-1=Culvert (Passes 20.55 cfs of 36.75 cfs potential flow)
-2=Orifice/Grate (Orifice Controls 20.55 cfs @ 4.13 fps)
—3=Orifice/Grate (Controls 0.00 cfs)
Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=144.00' TW=133.50' (Dynamic Tailwater)
4=Broad-Crested Rectangular Weir(Controls 0.00 cfs)

Summary for Pond 2AP: FRENCH'S STREAM WEST BRANCH

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 145.16' @ 13.65 hrs Surf.Area= 66,980 sf Storage= 49,612 cf
Plug-Flow detention time $=4.5 \mathrm{~min}$ calculated for 31.813 af (100% of inflow)
Center-of-Mass det. time $=4.5 \mathrm{~min}$ (922.8-918.3)

| Volume | Invert | Avail.Storage | Storage Description |
| ---: | ---: | ---: | ---: | ---: |
| \#1 | 141.70' | 1,815,201 cf | Custom Stage Data (Pr |
| Elevation
 (feet) | Surf.Area
 (sq-ft) | Inc.Store
 (cubic-feet) | Cum.Store
 (cubic-feet) |
| 141.70 | 0 | 0 | 0 |
| 144.00 | 6,640 | 7,636 | 7,636 |
| 145.00 | 57,230 | 31,935 | 39,571 |
| 146.00 | 117,540 | 87,385 | 126,956 |
| 147.00 | 216,860 | 167,200 | 294,156 |
| 148.00 | 359,360 | 288,110 | 582,266 |
| 149.00 | 640,140 | 499,750 | $1,082,016$ |
| 150.00 | 826,230 | 733,185 | $1,815,201$ |

Device	Routing	Invert	Outlet Devices
\#1	Primary	141.70'	48.0" Round Culvert
			$\mathrm{L}=126.0$ ' RCP, end-section conforming to fill, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 141.70' / 141.60' S=0.0008 '/' Cc= 0.900 $\mathrm{n}=0.013$, Flow Area= 12.57 sf
\#2	Secondary	141.70'	48.0" Round Culvert
			$\mathrm{L}=126.0$ ' RCP, end-section conforming to fill, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 141.70' / 141.50' S=0.0016 '/' Cc= 0.900
			$\mathrm{n}=0.013$, Flow Area= 12.57 sf

Primary OutFlow Max=47.94 cfs @ 13.65 hrs HW=145.16' TW=141.86' (Dynamic Tailwater)
—1=Culvert (Barrel Controls 47.94 cfs @ 5.55 fps)
Secondary OutFlow Max=50.36 cfs @ 13.65 hrs HW=145.16' TW=141.86' (Dynamic Tailwater)
—2=Culvert (Barrel Controls 50.36 cfs @ 5.83 fps)

Summary for Pond 2BP: EXISTING BASIN

Routed to Pond 2AP : FRENCH'S STREAM WEST BRANCH
Secondary = $\quad 0.00$ cfs @ 0.00 hrs, Volume= 0.000 af
Routed to Pond 2AP : FRENCH'S STREAM WEST BRANCH
Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 147.76' @ 12.51 hrs Surf.Area= 67,575 sf Storage= 163,282 cf
Plug-Flow detention time $=117.1$ min calculated for 9.009 af (97% of inflow)
Center-of-Mass det. time $=97.0 \mathrm{~min}(882.2-785.1)$

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	143.00	482,855 cf	Custom Stage Data (Prismatic)Listed below (Recalc)

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
143.00	10,920	0	0
144.00	16,580	13,750	13,750
145.00	28,700	22,640	36,390
146.00	39,560	34,130	70,520
147.00	53,515	46,538	117,058
148.00	71,930	62,723	179,780
149.00	80,230	76,080	255,860
150.00	88,130	84,180	340,040
151.00	95,000	91,565	431,605
151.50	110,000	51,250	482,855

Device	Routing	Invert	Outlet Devices
\#1	Primary	144.00'	24.0" Round Culvert
			$\mathrm{L}=79.0{ }^{\prime} \mathrm{RCP}$, end-section conforming to fill, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 144.00' / 143.21' S=0.0100 '/' Cc= 0.900 $n=0.013$, Flow Area $=3.14 \mathrm{sf}$
\#2	Secondary	150.00'	10.0' long x 20.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.200 .400 .600 .801 .001 .201 .401 .60
			Coef. (English) 2.682 .702 .702 .642 .632 .642 .642 .63

Primary OutFlow Max=25.15 cfs @ 12.51 hrs HW=147.76' TW=144.21' (Dynamic Tailwater)
_1=Culvert (Inlet Controls 25.15 cfs @ 8.00 fps)
Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=143.00' TW=141.70' (Dynamic Tailwater)
$\ell_{2=B r o a d-C r e s t e d ~ R e c t a n g u l a r ~ W e i r(~ C o n t r o l s ~} 0.00 \mathrm{cfs}$)

Summary for Pond 2CP: EXISTING PARKWAY BASIN

Existing basin information taken from Weymouth Patriot Parkway Utility As-Builts, prepared by LM Heavy Civil Construction LLC, dated October 15, 2018.

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 146.16' @ 14.87 hrs Surf.Area= 28,330 sf Storage= 106,450 cf
Plug-Flow detention time $=495.6$ min calculated for 0.782 af (25% of inflow)
Center-of-Mass det. time $=312.1 \mathrm{~min}(1,084.4-772.3$)

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	138.00	$240,905 \mathrm{cf}$	Custom Stage Data (Prismatic)Listed below (Recalc)

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
138.00	730	0	0
139.00	1,695	1,213	1,213
140.00	3,150	2,423	3,635
141.00	6,840	4,995	8,630
142.00	12,885	9,863	18,493
143.00	17,405	15,145	33,638
144.00	21,190	19,298	52,935
145.00	24,465	22,828	75,763
146.00	27,780	26,123	101,885
147.00	31,160	29,470	131,355
148.00	34,590	32,875	164,230
149.00	38,295	36,443	200,673
150.00	42,170	40,233	240,905

Device	Routing	Invert	Outlet Devices
\#1	Primary	142.30'	30.0" Round Culvert
			$\mathrm{L}=65.0^{\prime}$ RCP, end-section conforming to fill, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 142.30' / 141.50' S=0.0123 '// Cc= 0.900 $\mathrm{n}=0.013$, Flow Area= 4.91 sf
\#2	Device 1	146.00'	24.0" $\times 24.0$ " Horiz. Orifice/Grate $\mathrm{C}=0.600$
			Limited to weir flow at low heads

Primary OutFlow Max=1.72 cfs @ 14.87 hrs HW=146.16' TW=141.19' (Dynamic Tailwater)
L- $=$ Culvert (Passes 1.72 cfs of 38.20 cfs potential flow)
$\leftarrow_{2=O r i f i c e / G r a t e ~(W e i r ~ C o n t r o l s ~} 1.72$ cfs @ 1.32 fps)

Summary for Pond 2DP: EXISTING PARKWAY BASIN

Existing basin information taken from Weymouth Patriot Parkway Utility As-Builts, prepared by LM Heavy Civil Construction LLC, dated October 15, 2018.

Inflow Area $=$	$2.770 \mathrm{ac}, 75.81 \%$ Impervious, Inflow Depth $=2.40 "$ for 2 -year event		
Inflow	$=$	$6.94 \mathrm{cfs} @$	12.08 hrs, Volume $=$
Outflow	$=$	$0.00 \mathrm{cfs} @$	0.00 hrs , Volume $=$
Primary	$=$	$0.00 \mathrm{cfs} @$	0.00 hrs , Volume $=$

Routed to Pond 2EP : FRENCH'S STREAM WEST BRANCH
Secondary = $\quad 0.00$ cfs @ 0.00 hrs, Volume $=0.000$ af Routed to Pond 2EP : FRENCH'S STREAM WEST BRANCH

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 144.76' @ 24.34 hrs Surf.Area= 8,472 sf Storage= 24,152 cf
Plug-Flow detention time=(not calculated: initial storage exceeds outflow)
Center-of-Mass det. time= (not calculated: no outflow)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=139.00' TW=138.00' (Dynamic Tailwater) $-1=$ Culvert (Controls 0.00 cfs)
$L_{2}=$ Orifice/Grate (Controls 0.00 cfs)
Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=139.00' TW=138.00' (Dynamic Tailwater)
$\complement_{3=B r o a d-C r e s t e d ~ R e c t a n g u l a r ~ W e i r(~ C o n t r o l s ~} 0.00$ cfs)

Summary for Pond 2EP: FRENCH'S STREAM WEST BRANCH

Per site visit outlet consists of one 60-inch culvert.

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
138.00	0	0	0
140.00	9,600	9,600	9,600
141.00	13,135	11,368	20,968
142.00	35,665	24,400	45,368
143.00	47,280	41,473	86,840
144.00	58,400	52,840	139,680
145.00	71,585	64,993	204,673
146.00	85,230	78,408	283,080
147.00	106,515	95,873	378,953
148.00	183,900	145,208	524,160

Device Routing Invert Outlet Devices
\#1 Primary 138.00' 60.0" Round Culvert
$\mathrm{L}=380.0^{\prime} \mathrm{RCP}$, end-section conforming to fill, $\mathrm{Ke}=0.500$
Inlet / Outlet Invert= 138.00' / 135.70' S=0.0061 '/' Cc= 0.900 $\mathrm{n}=0.013$ Concrete pipe, bends \& connections, Flow Area= 19.63 sf

Primary OutFlow Max=104.58 cfs @ 13.84 hrs HW=141.90' TW=130.40' (Dynamic Tailwater)
L-1=Culvert (Barrel Controls 104.58 cfs @ 8.78 fps)

Summary for Pond 2FP: FRENCH'S STREAM WEST BRANCH

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 130.40' @ 13.78 hrs Surf.Area= 19,536 sf Storage= 43,659 cf
Plug-Flow detention time $=6.1 \mathrm{~min}$ calculated for 101.062 af (100% of inflow)
Center-of-Mass det. time $=4.9 \mathrm{~min}(1,031.5-1,026.5)$

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	125.90^{\prime}	665,278 cf	Custom Stage Data (Prismatic)Listed below (Recalc)

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
125.90	0	0	0
130.00	17,650	36,182	36,182
131.00	22,340	19,995	56,177
132.00	56,105	39,223	95,400
133.00	76,835	66,470	161,870
134.00	93,610	85,223	247,092
135.00	111,175	102,393	349,485
136.00	153,700	132,438	481,922
137.00	213,010	183,355	665,278

Device	Routing	Invert	Outlet Devices
\#1	Primary	127.60'	60.0" Round Culvert
			$\mathrm{L}=34.0$ ' RCP, end-section conforming to fill, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 126.60' / 127.60' S=-0.0294 '/' Cc= 0.900 $\mathrm{n}=0.013$, Flow Area= 19.63 sf
\#2	Secondary	126.70'	72.0" Round Culvert
			$\mathrm{L}=34.0^{\prime} \mathrm{RCP}$, end-section conforming to fill, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 125.90' / 126.70' S=-0.0235 '/' Cc= 0.900 $\mathrm{n}=0.013$, Flow Area $=28.27 \mathrm{sf}$
\#3	Tertiary	135.50'	10.0' long x 20.0' breadth Spillway over Path
			Head (feet) 0.200 .400 .600 .801 .001 .201 .401 .60
			Coef. (English) 2.682 .702 .702 .642 .632 .642 .642 .63

Primary OutFlow Max=64.54 cfs @ 13.78 hrs HW=130.40' TW=0.00' (Dynamic Tailwater)
-1=Culvert (Inlet Controls 64.54 cfs @ 5.70 fps)
Secondary OutFlow Max=110.70 cfs @ 13.78 hrs HW=130.40' TW=0.00' (Dynamic Tailwater)
—2=Culvert (Barrel Controls 110.70 cfs @ 6.75 fps)
Tertiary OutFlow Max=0.00 cfs @ $0.00 \mathrm{hrs} \mathrm{HW}=125.90^{\prime}$ TW=0.00' (Dynamic Tailwater)
$\complement_{3=S p i l l w a y ~ o v e r ~ P a t h ~(~ C o n t r o l s ~} 0.00 \mathrm{cfs}$)

Summary for Pond 2IP: PROPOSED PHASE 1 BASIN

Inflow Area =	$=11$	18.86\% Impervious, In	(") for 2-year event
Inflow	$=66.09$ cfs @	12.14 hrs , Volume=	- 15.023 af
Outflow	10.30 cfs @	16.94 hrs , Volume=	9.301 af, Atten $=84 \%$, Lag $=287.9 \mathrm{~min}$
Primary	10.30 cfs @	16.94 hrs , Volume=	9.301 af
Routed to Pond 2EP : FRENCH'S STREAM WEST BRANCH			
Secondary =	$=0.00 \mathrm{cfs}$ @	0.00 hrs , Volume=	0.000 af
Routed to	to Pond 2EP : FR	CH'S STREAM WE	ST BRANCH

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 142.17' @ 16.94 hrs Surf.Area= 136,900 sf Storage= $401,200 \mathrm{cf}$
Plug-Flow detention time $=568.0$ min calculated for 9.300 af (62% of inflow)
Center-of-Mass det. time= $409.7 \mathrm{~min}(1,356.5-946.7)$

Volume	Invert Av	Avail.Storage Sto	torage Description
\#1	139.00' 1,31	48 cf Custom	tage Data (Pr
Elevation (feet)	Surf.Area $(\mathrm{sq}-\mathrm{ft})$	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
139.00	116,400	0	0
140.00	122,800	119,600	119,600
141.00	129,270	126,035	245,635
142.00	135,790	132,530	378,165
143.00	142,360	139,075	517,240
144.00	148,990	145,675	662,915
145.00	155,680	152,335	815,250
146.00	162,400	159,040	974,290
147.00	169,220	165,810	1,140,100
148.00	176,075	172,648	1,312,748

Device	Routing	Invert	Outlet Devices
\#1	Primary	139.00'	36.0" Round Culvert
			$\mathrm{L}=100.0{ }^{\text {' }}$ RCP, end-section conforming to fill, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 139.00' / 137.00' S=0.0200 '//' Cc= 0.900 $\mathrm{n}=0.013$, Flow Area $=7.07 \mathrm{sf}$
\#2	Device 1	141.00'	36.0" W x 10.0" H Vert. Orifice/Grate $\mathrm{C}=0.600$
			Limited to weir flow at low heads
\#3	Device 1	142.50'	36.0" W x 12.0" H Vert. Orifice/Grate C= 0.600
			Limited to weir flow at low heads
\#4	Device 1	144.00'	36.0 " 36.0 " Horiz. Orifice/Grate $\mathrm{C}=0.600$
			Limited to weir flow at low heads
\#5	Secondary	146.00'	20.0' long x 20.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.200 .400 .600 .801 .001 .201 .401 .60
			Coef. (English) 2.682 .702 .702 .642 .632 .642 .642 .63

Primary OutFlow Max=10.30 cfs @ 16.94 hrs HW=142.17' TW=140.04' (Dynamic Tailwater) $-1=C u l v e r t$ (Passes 10.30 cfs of 43.97 cfs potential flow)
-2=Orifice/Grate (Orifice Controls 10.30 cfs @ 4.12 fps)
$-3=$ Orifice/Grate (Controls 0.00 cfs)
4=Orifice/Grate (Controls 0.00 cfs)
Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=139.00' TW=138.00' (Dynamic Tailwater)
$\complement_{5=B r o a d-C r e s t e d ~ R e c t a n g u l a r ~ W e i r(~ C o n t r o l s ~} 0.00$ cfs)

Summary for Pond 2JP: PROPOSED BASIN

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 162.62' @ 12.44 hrs Surf.Area= 32,772 sf Storage= $50,528 \mathrm{cf}$
Plug-Flow detention time $=167.2$ min calculated for 2.396 af (87% of inflow)
Center-of-Mass det. time= 110.2 min (926.5-816.3)

Primary OutFlow Max=11.04 cfs @ 12.44 hrs HW=162.62' TW=144.13' (Dynamic Tailwater)
L1=Culvert (Passes 11.04 cfs of 11.84 cfs potential flow)
-2=Orifice/Grate (Orifice Controls 11.04 cfs @ 3.68 fps)
-3=Orifice/Grate (Controls 0.00 cfs)
Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=161.00' TW=141.70' (Dynamic Tailwater)
-4=Broad-Crested Rectangular Weir(Controls 0.00 cfs)

Summary for Pond 2KP: PROPOSED BASIN

Routed to Pond 2FP : FRENCH'S STREAM WEST BRANCH
Secondary = $\quad 0.00$ cfs @ 0.00 hrs, Volume= 0.000 af
Routed to Pond 2FP : FRENCH'S STREAM WEST BRANCH
Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 149.68' @ 12.98 hrs Surf.Area= 46,503 sf Storage= $74,740 \mathrm{cf}$
Plug-Flow detention time $=296.5$ min calculated for 2.235 af (69% of inflow)
Center-of-Mass det. time $=198.8 \mathrm{~min}(1,025.6-826.8)$

Primary OutFlow Max=4.67 cfs @ 12.98 hrs HW=149.68' TW=130.12' (Dynamic Tailwater)
—1=Culvert (Passes 4.67 cfs of 17.99 cfs potential flow)
-2=Orifice/Grate (Orifice Controls 4.67 cfs @ 3.11 fps)
-3=Orifice/Grate (Controls 0.00 cfs)
-4=Orifice/Grate (Controls 0.00 cfs)
Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=148.00' TW=125.90' (Dynamic Tailwater)
${ }^{4}$ 5 Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Pond 2LP: PROPOSED BASIN

Inflow Area $=$	10.690 ac,	0.00% Impervious, Inflow Depth $=2.18$ " for 2 -year event	
Inflow	$=$	$27.16 \mathrm{cfs} @$	12.09 hrs, Volume $=$
Outflow	$=$	$10.06 \mathrm{cfs} @$	12.35 hrs , Volume $=$
Primary	$=$	$10.06 \mathrm{cfs} @$	12.35 hrs , Volume $=$

Routed to Pond 2FP : FRENCH'S STREAM WEST BRANCH
Secondary = $\quad 0.00$ cfs @ 0.00 hrs, Volume= 0.000 af
Routed to Pond 2FP : FRENCH'S STREAM WEST BRANCH
Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 156.56' @ 12.35 hrs Surf.Area= 22,297 sf Storage= 32,284 cf
Plug-Flow detention time $=139.6 \mathrm{~min}$ calculated for 1.714 af (88% of inflow)
Center-of-Mass det. time $=85.3 \min (897.9-812.6)$

Primary OutFlow Max=10.06 cfs @ 12.35 hrs HW=156.56' TW=129.44' (Dynamic Tailwater)
—1=Culvert (Barrel Controls 10.06 cfs @ 5.28 fps)
-2=Orifice/Grate (Passes 10.06 cfs of 10.34 cfs potential flow)

- $3=$ Orifice/Grate (Controls 0.00 cfs)
-4=Orifice/Grate (Controls 0.00 cfs)
Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=155.00' TW=125.90' (Dynamic Tailwater) -5=Broad-Crested Rectangular Weir(Controls 0.00 cfs)

Summary for Pond 2MP: PROPOSED BASIN

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 179.76' @ 12.27 hrs Surf.Area= 18,220 sf Storage= 44,575 cf
Plug-Flow detention time $=78.8 \mathrm{~min}$ calculated for 3.342 af (95% of inflow)
Center-of-Mass det. time $=52.3 \min (864.9-812.6)$

Primary OutFlow Max=22.61 cfs @ 12.27 hrs HW=179.76' TW=151.14' (Dynamic Tailwater)
-1=Culvert (Passes 22.61 cfs of 46.09 cfs potential flow)
-2=Orifice/Grate (Orifice Controls 10.24 cfs @ 6.83 fps)
-3=Orifice/Grate (Orifice Controls 12.37 cfs @ 4.12 fps)
-4=Orifice/Grate (Controls 0.00 cfs)
Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=177.00' TW=150.00' (Dynamic Tailwater)
5=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Pond 3AP: FRENCH'S STREAM EAST BRANCH

Inflow Area =	61.820 ac ,	8.41\% Impervious,	Iow Dept	2-year event
Inflow	34.70 cfs @	13.05 hrs, Volume=	- 7.325 af	
Outflow	34.35 cfs @	13.10 hrs , Volume=	- 7.319 af ,	en= $1 \%, L$ Lag $=3.1 \mathrm{~m}$
Primary	34.35 cfs @	13.10 hrs , Volume=	7.319 af	
Routed to Pond 3BP : FRENCH'S STREAM EAST BRANCH				
Secondary =	0.00 cfs @	$0.00 \mathrm{hrs}, \mathrm{Volume=}$	0.000 af	
		'S STREAM EA		

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 144.79' @ 13.10 hrs Surf.Area= 3,411 sf Storage= 5,608 cf
Plug-Flow detention time $=4.0 \mathrm{~min}$ calculated for 7.319 af (100% of inflow)
Center-of-Mass det. time= 3.2 min (913.0-909.8)

Summary for Pond 3BP: FRENCH'S STREAM EAST BRANCH

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 132.93' @ 13.59 hrs Surf.Area= 36,830 sf Storage= 59,880 cf
Plug-Flow detention time $=8.8 \mathrm{~min}$ calculated for 21.531 af (100% of inflow)
Center-of-Mass det. time $=8.8 \mathrm{~min}$ (943.4-934.6)

Primary OutFlow Max=76.28 cfs @ 13.59 hrs HW=132.93' TW=0.00' (Dynamic Tailwater)
L- $_{1=C u l v e r t ~(B a r r e l ~ C o n t r o l s ~} 76.28$ cfs @ 6.74 fps)
Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=129.20' TW=0.00' (Dynamic Tailwater) -2=Spillway over Path (Controls 0.00 cfs)

Summary for Subcatchment 1A:

Runoff $=3.68$ cfs @ 12.08 hrs, Volume= $\quad 0.276$ af, Depth= 4.19"
Routed to Pond 1AP : SPORTS COMPLEX INFILTRATION BASIN
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10-year Rainfall=5.10"

Area	ac)	CN	Description			
0.7	. 710	$\begin{aligned} & 98 \\ & 39 \end{aligned}$	Pavement			
	. 7980	92	Weighted Average 10.13\% Pervious Area 89.87\% Impervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)		Slope (ft/ft)	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description
6.0						Direct Entry

Summary for Subcatchment 1B:

Runoff = 4.12 cfs @ 12.08 hrs, Volume= 0.306 af, Depth= 4.08"
Routed to Pond 1BP : SPORTS COMPLEX INFILTRATION BASIN
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10-year Rainfall=5.10"

Area	ac)	CN	Description			
0.	. 100	$\begin{aligned} & 98 \\ & 39 \end{aligned}$	Pavement			
	. 1000	91	Weighted Average 11.11\% Pervious Area 88.89\% Impervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.0						Direct Entry

Summary for Subcatchment 1C:

Assumed pipe channel has slope 0.005 since no data given
Runoff $=54.31 \mathrm{cfs}$ @ 12.61 hrs, Volume $=$
Routed to Pond $1 \mathrm{CP}:$ MEMORIAL GROVE AVE. BASIN

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= $0.00-72.00 \mathrm{hrs}$, dt= 0.01 hrs Type III 24-hr 10 -year Rainfall= $=5.10$

[^18]
Summary for Subcatchment 1D:

Runoff = 18.51 cfs @ 13.07 hrs, Volume= 4.021 af, Depth= $1.65{ }^{\prime \prime}$
Routed to Pond 1DP : UPSTREAM DOGLEG
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10-year Rainfall=5.10"

[^19]
Summary for Subcatchment 1E:

Runoff $=409.37$ cfs @ 12.09 hrs, Volume= 29.181 af, Depth= 3.17" Routed to Pond 1IP : TACAN

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10-year Rainfall=5.10"

Summary for Subcatchment 1F:

Runoff $=40.01$ cfs @ 12.09 hrs, Volume= 2.875 af, Depth= 3.46"
Routed to Pond 1FP : EXISTING PARKWAY BASIN
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10-year Rainfall=5.10"

Area	ac)	CN	Description			
5	. 070	98	Pavement			
0	410	100	Open Water			
	880	61	>75\% Grass cover, Good, HSG B			
	610	74	>75\% Grass cover, Good, HSG C			
	970	85	Weighted Average			
	490		45.04\% Pervious Area			
	480		54.96\% Impervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Leng (fe		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.0						Direct Entry

Summary for Subcatchment 1G:

Runoff $=8.54$ cfs @ 12.39 hrs, Volume= $\quad 1.110$ af, Depth= 4.19"

Routed to Pond 1GP : SPORTS COMPLEX BASIN
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10-year Rainfall=5.10"

Summary for Subcatchment 1H:

Runoff $=\quad 6.33$ cfs @ 12.08 hrs, Volume= 0.485 af, Depth= 4.41"
Routed to Pond 1HP : SPORTS COMPLEX BASIN
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10-year Rainfall=5.10"

Summary for Subcatchment 1I:

Runoff = 66.81 cfs @ 13.50 hrs, Volume= 17.943 af, Depth= $1.95{ }^{\prime \prime}$
Routed to Pond 1IP : TACAN
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10-year Rainfall=5.10"

[^20]
Summary for Subcatchment 1J:

Runoff $=22.46$ cfs @ 12.08 hrs, Volume= 1.824 af, Depth= 4.86" Routed to Pond 1LP : CENTRAL GREENWAY

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10-year Rainfall=5.10"

	Area (ac)	CN	Description
*	4.500	98	Pavement
	4.500		100.00\% Impervious Area

| Tc
 (min) | Length
 (feet) | Slope
 $(\mathrm{ft} / \mathrm{ft})$ | Velocity
 $(\mathrm{ft} / \mathrm{sec})$ | Capacity
 (cfs) |
| ---: | ---: | ---: | ---: | :--- | Description | Direct Entry, |
| :--- |

Summary for Subcatchment 1K:

Runoff $=109.12$ cfs @ 12.14 hrs, Volume= 9.078 af, Depth= $3.76{ }^{\prime \prime}$
Routed to Pond 1LP : CENTRAL GREENWAY
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10-year Rainfall=5.10"

Area	ac) C	Description			
28.940		Proposed Development Area			
	940	100	00\% Perv	us Area	
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
10.0					Direct Entry

Summary for Subcatchment 1L:

Runoff $=107.77$ cfs @ 12.14 hrs, Volume= $\quad 8.883$ af, Depth= $3.56{ }^{\prime \prime}$
Routed to Pond 1LP : CENTRAL GREENWAY
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10-year Rainfall=5.10"

Summary for Subcatchment 1M:

Runoff $=36.17$ cfs @ 12.14 hrs, Volume $=2.970$ af, Depth= 3.46"
Routed to Pond 1MP : CENTRAL GREENWAY
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10-year Rainfall=5.10"

Summary for Subcatchment 1N:

Assumed slope of 0.002
Runoff $=90.75$ cfs @ 12.14 hrs, Volume $=$
Routed to Pond 1 NP $:$ WEST GREENWAY

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10-year Rainfall=5.10"

Summary for Subcatchment 10:

Runoff $=32.04$ cfs @ 12.09 hrs, Volume= 2.322 af, Depth= 3.66"
Routed to Pond 1OP : WEST GREENWAY
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10-year Rainfall=5.10"

Summary for Subcatchment 1P:

Runoff $=80.38 \mathrm{cfs} @ 12.09 \mathrm{hrs}$, Volume= $\quad 5.825$ af, Depth= $3.66{ }^{\prime \prime}$
Routed to Pond 1PP : WEST GREENWAY
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10-year Rainfall=5.10"

Area	(ac)	CN	Des	cription		
$\begin{array}{r} 17.420 \\ 1.670 \\ \hline \end{array}$		88	Proposed Development Area$>75 \%$ Grass cover, Good, HSG C			
		74				
19.090		87	Weighted Average 100.00\% Pervious Area			
	090					
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Len (fe		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.0						Direct Entry

Summary for Subcatchment 1Q:

Runoff $=71.29 \mathrm{cfs} @ 12.09 \mathrm{hrs}$, Volume=
Routed to Pond 1QP : WEST GREENWAY
5.166 af, Depth= 3.66"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10-year Rainfall=5.10"

Area	(ac)	CN	Des	cription			
$\begin{array}{r} 15.260 \\ 1.670 \\ \hline \end{array}$		88	Proposed Development Area$>75 \%$ Grass cover, Good, HSG C				
		74					
$\begin{aligned} & \hline 16.930 \\ & 16.930 \end{aligned}$		87	Weighted Average 100.00\% Pervious Area				
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Len (fe			Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.0						Direct Entry	

Summary for Subcatchment 2A:

Runoff $=126.52$ cfs @ 13.29 hrs, Volume= 31.997 af, Depth= 2.71"
Routed to Pond 2AP : FRENCH'S STREAM WEST BRANCH
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10-year Rainfall=5.10"

Summary for Subcatchment 2B:

Runoff = 196.19 cfs @ 12.08 hrs, Volume= 15.019 af, Depth= 4.41"
Routed to Pond 2BP : EXISTING BASIN
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10-year Rainfall=5.10"

Summary for Subcatchment 2C:

Runoff = 62.44 cfs @ 12.08 hrs, Volume= 4.906 af, Depth= 4.63"
Routed to Pond 2CP : EXISTING PARKWAY BASIN
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10-year Rainfall=5.10"

Summary for Subcatchment 2D-1:

Runoff $=10.48 \mathrm{cfs} @ 12.08 \mathrm{hrs}$, Volume= $\quad 0.851$ af, Depth= 4.86"
Routed to Pond 2DP : EXISTING PARKWAY BASIN
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10-year Rainfall=5.10"

Area (ac)		CN	Description
2.100	98	Pavement	
		100.00% Impervious Area	

Tc (min)	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity $(\mathrm{ft} / \mathrm{sec})$	Capacity (cfs)

Summary for Subcatchment 2D-2:

Runoff $=0.03$ cfs @ 12.46 hrs, Volume= 0.012 af, Depth= $0.22{ }^{\prime \prime}$
Routed to Pond 2DP : EXISTING PARKWAY BASIN
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10-year Rainfall=5.10"

Area (ac)	CN	Description
0.670	39	$>75 \%$ Grass cover, Good, HSG A
0.670		100.00% Pervious Area

Tc (min)	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity $(\mathrm{ft} / \mathrm{sec})$	Capacity (cfs)

Summary for Subcatchment 2E:

Runoff $=25.44$ cfs @ 13.29 hrs, Volume= 6.425 af, Depth= 1.57"
Routed to Pond 2EP : FRENCH'S STREAM WEST BRANCH
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10-year Rainfall=5.10"

[^21]
Summary for Subcatchment 2F:

Runoff $=44.14$ cfs @ 12.99 hrs, Volume= 9.274 af, Depth= 1.80"
Routed to Pond 2FP : FRENCH'S STREAM WEST BRANCH
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10-year Rainfall=5.10"

Area (ac) CN D			Description				
20.570		Woods, Good, HSG B					
25.620		Woods, Good, HSG D					
15.770		$61>$	>75\% Grass cover, Good, HSG B				
$\begin{aligned} & 61.960 \\ & 61.960 \end{aligned}$			Weighted Average 100.00\% Pervious Area				
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
47.9	100	0.0100	0.03		Sheet Flow, Woods: Dense underbrush n= 0.800	P2 $=3.40$	
22.5	675	0.0100	0.50		Shallow Concentrated Flow, Woodland $\mathrm{Kv}=5.0 \mathrm{fps}$		

$70.4 \quad 775$ Total

Summary for Subcatchment 2G:

Assumed Tc value
Runoff $=\quad 18.52$ cfs @ 13.47 hrs, Volume $=\quad 5.337$ af, Depth= 3.87"
Routed to Pond 2AP : FRENCH'S STREAM WEST BRANCH

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10-year Rainfall=5.10"

Summary for Subcatchment 2H:

Assumed Tc value
Runoff $=8.14 \mathrm{cfs}$ @ 13.60 hrs, Volume $=$
Routed to Pond 2AP : FRENCH'S STREAM WEST BRANCH

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10-year Rainfall=5.10"

Area	(ac)	CN	Description			
3.	370	98	Pavement			
1.	690	98	Roof			
	720	61	>75\% Grass cover, Good, HSG B			
	780	82	Weighted Average			
	720		42.37\% Pervious Area			
	060		57.6	3\% Imperv	ious Area	
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$			Slope (ft/ft)	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \\ \hline \end{array}$	Description
120.0						Direct Entry

Summary for Subcatchment 2l-1:

Runoff $=90.04$ cfs @ 12.14 hrs , Volume= $\quad 7.490$ af, Depth= $3.76{ }^{\prime \prime}$
Routed to Pond 2IP : PROPOSED PHASE 1 BASIN
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10-year Rainfall=5.10"

Area	ac) C	Description			
23.880		Proposed Development Area			
	880	100	00\% Perv	us Area	
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
10.0					Direct Entry

Summary for Subcatchment 2J:

Runoff $=66.19 \mathrm{cfs} @ 12.09 \mathrm{hrs}$, Volume= 4.797 af, Depth= 3.66"
Routed to Pond 2JP : PROPOSED BASIN
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10-year Rainfall=5.10"

Area	(ac)	CN	Des	cription		
$\begin{array}{r} 14.430 \\ 1.290 \\ \hline \end{array}$		$\begin{aligned} & \hline 88 \\ & 80 \end{aligned}$	Proposed Development Area$>75 \%$ Grass cover, Good, HSG D			
$\begin{aligned} & 15.720 \\ & 15.720 \end{aligned}$		87	Weighted Average 100.00\% Pervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)		Slope (ft/ft)	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description
6.0						Direct Entry

Summary for Subcatchment 2K:

Runoff $=82.14$ cfs @ 12.09 hrs , Volume= $\quad 5.884$ af, Depth= $3.36{ }^{\prime \prime}$
Routed to Pond 2KP : PROPOSED BASIN
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10-year Rainfall=5.10"

Area	(ac)	CN	Des	cription		
$\begin{array}{r} 12.610 \\ 8.390 \end{array}$		$\begin{aligned} & 88 \\ & 77 \end{aligned}$	Proposed Development Area Woods, Good, HSG D			
$\begin{aligned} & 21.000 \\ & 21.000 \end{aligned}$		84	Weighted Average 100.00\% Pervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)		Slope (ft/ft)	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description
6.0						Direct Entry

Summary for Subcatchment 2L:

Runoff $=46.03 \mathrm{cfs} @ 12.09 \mathrm{hrs}$, Volume= $\quad 3.353$ af, Depth= 3.76"
Routed to Pond 2LP : PROPOSED BASIN
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10-year Rainfall=5.10"

Area (ac)	CN	Description
*	10.690	88
10.690		Proposed Development Area

Tc (min)	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity $(\mathrm{ft} / \mathrm{sec})$	Capacity (cfs)

Summary for Subcatchment 2M:

Runoff = 83.32 cfs @ 12.09 hrs, Volume= 6.069 af, Depth= 3.76"
Routed to Pond 2MP : PROPOSED BASIN
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10-year Rainfall=5.10"

	Area (ac)	CN	Description
*	19.350	88	Proposed Development Area
	19.350		100.00\% Pervious Area

| Tc
 (min) | Length
 (feet) | Slope
 $(\mathrm{ft} / \mathrm{ft})$ | Velocity
 $(\mathrm{ft} / \mathrm{sec})$ | Capacity
 (cfs) |
| ---: | ---: | ---: | ---: | :--- | Description | Direct Entry, |
| :--- |

Summary for Subcatchment 3A:

Runoff $=69.64$ cfs @ 13.04 hrs, Volume= 14.408 af, Depth= 2.80"
Routed to Pond 3AP : FRENCH'S STREAM EAST BRANCH
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10-year Rainfall=5.10"

74.8 1,438 Total

Summary for Subcatchment 3B:

Runoff $=109.34$ cfs @ 13.43 hrs, Volume= $\quad 28.778$ af, Depth= 2.62"
Routed to Pond 3BP : FRENCH'S STREAM EAST BRANCH
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10-year Rainfall=5.10"

Summary for Subcatchment 21-2:

Runoff $=\quad 23.84$ cfs @ 12.15 hrs , Volume= $\quad 1.986$ af, Depth= 2.03"
Routed to Pond 2IP : PROPOSED PHASE 1 BASIN
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10-year Rainfall=5.10"

Summary for Reach 1R: DP-1 TACAN OUTFALL

```
Inflow Area = 377.860 ac, 3.40% Impervious, Inflow Depth > 2.96" for 10-year event
Inflow = 62.29 cfs @ 16.45 hrs, Volume= 93.114 af
Outflow = 62.29 cfs @ 16.45 hrs, Volume= 93.114 af, Atten= 0%, Lag= 0.0 min
    Routed to Pond 2FP : FRENCH'S STREAM WEST BRANCH
Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
```

Summary for Reach 2R: DP-2 FRENCH'S STREAM WEST BRANCH
Inflow Area $=872.630$ ac, 11.83% Impervious, Inflow Depth > 2.76" for 10-year event
Inflow $=266.28$ cfs @ 13.73 hrs, Volume $=200.400$ af
Outflow $=266.28$ cfs @ 13.73 hrs , Volume $=200.400 \mathrm{af}$, Atten $=0 \%$, Lag $=0.0 \mathrm{~min}$
Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs

Summary for Reach 3R: DP-3 FRENCH'S STREAM EAST BRANCH

```
Inflow Area = 193.720 ac, 8.56% Impervious, Inflow Depth = 2.67" for 10-year event
Inflow = 153.44 cfs @ 13.77 hrs, Volume= 43.180 af
Outflow = 153.44 cfs @ 13.77 hrs, Volume= 43.180 af, Atten= 0%, Lag= 0.0 min
```

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs

Summary for Pond 1AP: SPORTS COMPLEX INFILTRATION BASIN

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 171.02' @ 12.11 hrs Surf.Area= 2,201 sf Storage= 2,829 cf
Plug-Flow detention time $=100.4$ min calculated for 0.276 af (100% of inflow)
Center-of-Mass det. time= 100.4 min (882.5-782.1)

Volume	Invert	Avail.Storage	Storage Description
\#1A	168.50'	1,559 cf	24.83'W x 88.64'L x 2.33'H Field A
			5,136 cf Overall - 1,238 cf Embedded = 3,898 cf x 40.0\% Voids
\#2A	169.00'	1,238 cf	ADS_StormTech SC-310 +Capx 84 Inside \#1
			Effective Size $=28.9$ "W x 16.0"H => $2.07 \mathrm{sf} \times 7.12^{\prime} \mathrm{L}=14.7 \mathrm{cf}$
			Overall Size $=34.0$ "W $\times 16.0^{\prime \prime} \mathrm{H} \times 7.56{ }^{\text {'L }}$ with 0.44 ' Overlap
			84 Chambers in 7 Rows
\#3	168.50'	85 cf	4.00'D x 6.80'H CB-Impervious
\#4	175.20'	449 cf	Ponding at CB (Prismatic)Listed below (Recalc)

> 3,332 cf Total Available Storage

Storage Group A created with Chamber Wizard

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
175.20	10	0	0
176.00	300	124	124
176.50	1,000	325	449

Device	Routing	Invert	Outlet Devices
\#1	Primary	170.00'	18.0" Round Culvert
			$\mathrm{L}=13.0{ }^{\prime}$ RCP, end-section conforming to fill, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 170.00' / 169.85' S=0.0115 '/' Cc= 0.900 $\mathrm{n}=0.013$. Flow Area $=1.77 \mathrm{sf}$
\#2	Discarded	168.50'	2.410 in/hr Exfiltration over Surface area Phase-In= 0.01'

Discarded OutFlow Max=0.12 cfs @ $10.44 \mathrm{hrs} \mathrm{HW}=168.58$ ' (Free Discharge) ${ }_{2=\text { Exfiltration (Exfiltration Controls }}$ (0.12 cfs)
L2=Exfiltration (Exfiltration Controls 0.12 cfs)
Primary OutFlow Max=3.37 cfs @ 12.11 hrs HW=170.99' TW=151.64' (Dynamic Tailwater)
L-1=Culvert (Barrel Controls 3.37 cfs @ 3.84 fps)

Pond 1AP: SPORTS COMPLEX INFILTRATION BASIN - Chamber Wizard Field A
Chamber Model = ADS_StormTechSC-310 +Cap (ADS StormTech®SC-310 with cap length)
Effective Size $=28.9$ "W $\times 16.0^{\prime \prime} \mathrm{H}=>2.07 \mathrm{sf} \times 7.12$ 'L $=14.7 \mathrm{cf}$
Overall Size $=34.0$ "W x 16.0"H x $7.56^{\prime} \mathrm{L}$ with 0.44 ' Overlap
34.0" Wide +6.0 " Spacing $=40.0$ " C-C Row Spacing

12 Chambers/Row x 7.12' Long +0.60' Cap Length $x 2=86.64$ ' Row Length $+12.0^{\prime \prime}$ End Stone $\times 2=88.64^{\prime}$ Base Length
7 Rows x 34.0" Wide + 6.0" Spacing x 6 + 12.0" Side Stone x 2 = 24.83' Base Width
6.0" Stone Base + 16.0" Chamber Height $+6.0^{\prime \prime}$ Stone Cover $=2.33$ ' Field Height

84 Chambers $\times 14.7$ cf $=1,238.3$ cf Chamber Storage
5,136.2 cf Field $-1,238.3$ cf Chambers $=3,897.9$ cf Stone $\times 40.0 \%$ Voids $=1,559.1$ cf Stone Storage
Chamber Storage + Stone Storage $=2,797.5 \mathrm{cf}=0.064$ af
Overall Storage Efficiency = 54.5\%
Overall System Size $=88.64^{\prime} \times 24.83$ ' $\times 2.33^{\prime}$
84 Chambers
190.2 cy Field
144.4 cy Stone

Summary for Pond 1BP: SPORTS COMPLEX INFILTRATION BASIN

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 171.25' @ 12.13 hrs Surf.Area= 2,378 sf Storage= $2,975 \mathrm{cf}$
Plug-Flow detention time $=98.7 \mathrm{~min}$ calculated for 0.306 af (100% of inflow)
Center-of-Mass det. time $=98.7 \mathrm{~min}(884.9-786.2$)

Volume	Invert	Avail.Storage	Storage Description
\#1A	169.00'	1,683 cf	24.83'W x 95.76'L x 2.33'H Field A
			5,549 cf Overall - 1,342 cf Embedded $=4,207$ cf $\times 40.0 \%$ Voids
\#2A	169.50'	1,342 cf	ADS_StormTech SC-310 +Capx 91 Inside \#1
			Effective Size $=28.9$ "W x 16.0"H => $2.07 \mathrm{sf} \times 7.12 \mathrm{~L}=14.7$
			Overall Size $=34.0$ "W x 16.0"H $\times 7.56$ 'L with 0.44 ' Overlap
			91 Chambers in 7 Rows
\#3	169.00'	72 cf	4.00'D x 5.70'H CB-Impervious
\#4	172.70'	572 cf	Ponding at CB (Prismatic)Listed below (Recalc)

> 3,668 cf Total Available Storage

Storage Group A created with Chamber Wizard

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
172.70	10	0	0
173.00	300	47	47
174.50	400	525	572

Device	Routing	Invert	Outlet Devices
\#1	Primary	170.50'	12.0" Round Culvert X 2.00
			$\mathrm{L}=23.0$ ' RCP, end-section conforming to fill, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 170.50' / 170.20' S=0.0130 '/' Cc= 0.900
\#2	Discarded	169.00'	$2.410 \mathrm{in} / \mathrm{hr}$ Exfiltration over Surface area Phase-In= $0.01{ }^{\prime}$

Discarded OutFlow Max=0.13 cfs @ 10.34 hrs HW=169.06' (Free Discharge) ${ }_{2=\text { Exfiltration (Exfiltration Controls }}$ (0.13 cfs)
L2=Exfiltration (Exfiltration Controls 0.13 cfs)
Primary OutFlow Max=3.48 cfs @ 12.13 hrs HW=171.25' TW=151.70' (Dynamic Tailwater)
L-1=Culvert (Barrel Controls 3.48 cfs @ 3.82 fps)

Pond 1BP: SPORTS COMPLEX INFILTRATION BASIN - Chamber Wizard Field A
Chamber Model = ADS_StormTechSC-310 +Cap (ADS StormTech®SC-310 with cap length)
Effective Size $=28.9$ "W $\times 16.0^{\prime \prime} \mathrm{H}=>2.07 \mathrm{sf} \times 7.12$ 'L $=14.7 \mathrm{cf}$
Overall Size $=34.0$ "W x 16.0"H x $7.56^{\prime} \mathrm{L}$ with 0.44 ' Overlap
34.0" Wide +6.0 " Spacing $=40.0$ " C-C Row Spacing

13 Chambers/Row x 7.12' Long +0.60' Cap Length $x 2=93.76$ ' Row Length $+12.0^{\prime \prime}$ End Stone $\times 2=95.76^{\prime}$ Base Length
7 Rows x 34.0" Wide $+6.0^{\prime \prime}$ Spacing x $6+12.0$ " Side Stone x $2=24.83$ ' Base Width
6.0" Stone Base + 16.0" Chamber Height $+6.0^{\prime \prime}$ Stone Cover $=2.33$ ' Field Height

91 Chambers $\times 14.7$ cf $=1,341.5$ cf Chamber Storage
$5,548.8$ cf Field $-1,341.5$ cf Chambers $=4,207.2$ cf Stone $\times 40.0 \%$ Voids $=1,682.9$ cf Stone Storage
Chamber Storage + Stone Storage $=3,024.4 \mathrm{cf}=0.069 \mathrm{af}$
Overall Storage Efficiency $=54.5 \%$
Overall System Size $=95.76^{\prime} \times 24.83^{\prime} \times 2.33^{\prime}$
91 Chambers
205.5 cy Field
155.8 cy Stone

Summary for Pond 1CP: MEMORIAL GROVE AVE. BASIN

Assumed slope of 0.005 for outlet culvert.

Inflow Area =Inflow =	47.860 ac, 44.44% Impervious, Inflow Depth $=3.65{ }^{\prime \prime}$ for 10-year event			
	84.65 cfs @	12.20 hrs, Volume=	14.541 af	
Outflow	32.27 cfs @	13.25 hrs, Volume $=$	14.478 af,	ten= 62%, Lag= 62.8 mi
Primary = Routed to	$\begin{aligned} & 32.27 \mathrm{cfs} @ \\ & \text { @ } 1 \mathrm{DP}: \text { UPS } \end{aligned}$	13.25 hrs , Volume= TREAM DOGLEG	14.478 af	
Secondary = Routed to	0.00 cfs @ 1DP : UPS	0.00 hrs , Volume= TREAM DOGLEG	0.000 af	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 154.30' @ 13.25 hrs Surf.Area= 71,256 sf Storage= 252,476 cf
Plug-Flow detention time $=152.7$ min calculated for 14.478 af (100% of inflow)
Center-of-Mass det. time= 149.5 min (984.4-834.9)

Primary OutFlow Max=32.27 cfs @ 13.25 hrs HW=154.30' TW=145.66' (Dynamic Tailwater)
—1=Culvert (Barrel Controls 32.27 cfs @ 8.12 fps)
Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=150.00' TW=142.50' (Dynamic Tailwater)
L2=Broad-Crested Rectangular Weir(Controls 0.00 cfs)

Summary for Pond 1DP: UPSTREAM DOGLEG

Inflow Area =	77.180 ac ,	27.56\% Impervious,	epth > 2.8	for 10-year event
Inflow	50.51 cfs @	13.08 hrs, Volume=	18.500 af	
Outflow	50.37 cfs @	13.13 hrs , Volume=	18.500 af, A	Atten= 0\%, Lag= 3.1 min
Primary	24.69 cfs @	13.13 hrs , Volume=	8.731 af	
Routed to	2IP : PROP	POSED PHASE 1 BAS		
Secondary =	25.69 cfs @	13.13 hrs , Volume=	9.769 af	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 145.67' @ 13.13 hrs Surf.Area= 4,505 sf Storage= 3,093 cf
Plug-Flow detention time $=0.5 \mathrm{~min}$ calculated for 18.497 af (100% of inflow)
Center-of-Mass det. time $=0.5 \mathrm{~min}$ (971.8-971.2)

Summary for Pond 1FP: EXISTING PARKWAY BASIN

Primary Culvert - Assumed Inverts, pipe diameter, and pipe material.

Inflow Area =	9.970 ac, 54.96% Impervious, Inflow Depth $=3.46$ " for 10-year event			
Inflow	40.01 cfs @	12.09 hrs , Volume=	2.875 af	
Outflow	2.42 cfs @	13.94 hrs , Volume=	1.384 af, At	tten= 94\%, Lag= 111.4 min
Primary = Routed to	$\begin{gathered} 2.42 \text { cfs @ } \\ \text { 1IP : TACAN } \end{gathered}$	13.94 hrs, Volume $=$	1.384 af	
Secondary = Routed to	$\begin{aligned} & 0.00 \mathrm{cfs} @ \\ & 1 \mathrm{IP} \text { : TACAN } \end{aligned}$, 0.00 hrs , Volume $=$	0.000 af	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 147.23' @ 13.94 hrs Surf.Area= 24,966 sf Storage= 81,891 cf
Plug-Flow detention time $=418.6 \mathrm{~min}$ calculated for 1.384 af (48% of inflow)
Center-of-Mass det. time $=304.2 \mathrm{~min}(1,111.0-806.8)$

Primary OutFlow Max=2.42 cfs @ 13.94 hrs HW=147.23' TW=144.29' (Dynamic Tailwater)
—1=Culvert (Barrel Controls 2.42 cfs @ 3.44 fps)
Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=143.00' TW=133.50' (Dynamic Tailwater)
$\complement_{2=B r o a d-C r e s t e d ~ R e c t a n g u l a r ~ W e i r(~ C o n t r o l s ~} 0.00$ cfs)

Summary for Pond 1GP: SPORTS COMPLEX BASIN

 Routed to Pond 1LP : CENTRAL GREENWAY

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 169.36' @ 12.67 hrs Surf.Area= 4,179 sf Storage= 7,713 cf
Plug-Flow detention time= 26.1 min calculated for 1.102 af (99% of inflow)
Center-of-Mass det. time $=21.7 \mathrm{~min}(825.4-803.6)$

Primary OutFlow Max=5.34 cfs @ 12.67 hrs HW=169.36' TW=150.34' (Dynamic Tailwater)
-1=Culvert (Barrel Controls 5.34 cfs @ 6.79 fps)
Secondary OutFlow Max=0.33 cfs @ 12.67 hrs HW=169.36' TW=150.34' (Dynamic Tailwater)
—2=Broad-Crested Rectangular Weir(Weir Controls 0.33 cfs @ 0.64 fps)

Summary for Pond 1HP: SPORTS COMPLEX BASIN
 Routed to Pond 1LP : CENTRAL GREENWAY

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 164.27' @ 12.17 hrs Surf.Area= 1,803 sf Storage= 1,616 cf

Plug-Flow detention time $=9.8 \mathrm{~min}$ calculated for 0.483 af (100% of inflow)
Center-of-Mass det. time $=6.8 \mathrm{~min}$ (779.7-772.9)

Primary OutFlow Max=4.34 cfs @ 12.17 hrs HW=164.27' TW=149.76' (Dynamic Tailwater)
-1=Culvert (Barrel Controls 4.34 cfs @ 5.52 fps)
Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=161.00' TW=146.00' (Dynamic Tailwater)
$\complement_{2=B r o a d-C r e s t e d ~ R e c t a n g u l a r ~ W e i r(~ C o n t r o l s ~} 0.00 \mathrm{cfs}$)

Summary for Pond 1IP: TACAN

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 144.68' @ 16.45 hrs Surf.Area= 967,868 sf Storage= 1,769,529 cf
Plug-Flow detention time $=310.7 \mathrm{~min}$ calculated for 93.114 af (100% of inflow)
Center-of-Mass det. time= $310.6 \mathrm{~min}(1,219.0-908.4$)

Summary for Pond 1LP: CENTRAL GREENWAY

 Routed to Pond 1MP : CENTRAL GREENWAY
Secondary = $\quad 0.00$ cfs @ 0.00 hrs, Volume= 0.000 af Routed to Pond 1MP : CENTRAL GREENWAY

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 150.47' @ 12.49 hrs Surf.Area= 81,605 sf Storage= 216,572 cf
Plug-Flow detention time $=42.6 \mathrm{~min}$ calculated for 21.361 af (100% of inflow)
Center-of-Mass det. time= 42.7 min (842.6-799.8)

Primary OutFlow Max=101.59 cfs @ 12.19 hrs HW=149.92' TW=148.72' (Dynamic Tailwater)
—1=Culvert (Inlet Controls 101.59 cfs @ 5.28 fps)
Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=146.00' TW=145.00' (Dynamic Tailwater)
—2=Broad-Crested Rectangular Weir(Controls 0.00 cfs)

Summary for Pond 1MP: CENTRAL GREENWAY

Inflow Area =Inflow =	$78.180 \mathrm{ac}, \quad 9.40 \%$ Impervious, Inflow Depth = 3.74" for 10-year event			
	136.66 cfs @	12.18 hrs , Volume=	24.335 af	
Outflow	80.21 cfs @	12.64 hrs , Volume=	24.331 af, At	atten= 41\%, Lag= 27.7 mi
Primary = Routed to	80.21 cfs @ d 1IP:TACA	12.64 hrs , Volume=	24.331 af	
Secondary = Routed to	$\begin{aligned} & 0.00 \mathrm{cfs} @ \\ & \text { d 1IP : TACA } \end{aligned}$	0.00 hrs , Volume=	0.000 af	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 149.75' @ 12.64 hrs Surf.Area= 51,335 sf Storage $=137,467$ cf
Plug-Flow detention time $=26.7$ min calculated for 24.327 af (100% of inflow)
Center-of-Mass det. time $=26.5 \mathrm{~min}(865.1-838.6)$

Primary OutFlow Max=80.21 cfs @ 12.64 hrs HW=149.75' TW=143.27' (Dynamic Tailwater)
—1=Culvert (Inlet Controls 80.21 cfs @ 8.34 fps)
Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=145.00' TW=133.50' (Dynamic Tailwater)
L2=Broad-Crested Rectangular Weir(Controls 0.00 cfs$)$

Summary for Pond 1NP: WEST GREENWAY

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 150.10' @ 13.16 hrs Surf.Area= 79,457 sf Storage $=169,117$ cf
Plug-Flow detention time $=245.8 \mathrm{~min}$ calculated for 7.444 af (100% of inflow)
Center-of-Mass det. time $=243.3 \mathrm{~min}(1,050.7-807.4)$

Primary OutFlow Max=9.24 cfs @ 16.04 hrs HW=149.62' TW=149.22' (Dynamic Tailwater)
L-1=Culvert (Outlet Controls 9.24 cfs @ 2.95 fps)
Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=147.00' TW=146.00' (Dynamic Tailwater)
$\complement_{2=B r o a d-C r e s t e d ~ R e c t a n g u l a r ~ W e i r(~ C o n t r o l s ~} 0.00$ cfs)

Summary for Pond 10P: WEST GREENWAY

Inflow Area	32.820 ac, 0.00\% Impervious, Inflow Depth > 3.57" for 10-year event			
Inflow	37.39 cfs @	12.08 hrs , Volume=	9.767 af	
Outflow	12.86 cfs @	12.08 hrs , Volume=	9.763 af, A	Atten= 66\%, Lag $=0.0 \mathrm{~min}$
Primary = Routed to	$\begin{aligned} & 12.86 \mathrm{cfs} @ \\ & \text { d 1PP : WES } \end{aligned}$	12.08 hrs , Volume= T GREENWAY	9.763 af	
Secondary = Routed to	$\begin{aligned} & 0.00 \text { cfs @ } \\ & \text { 1PP : WES } \end{aligned}$	0.00 hrs , Volume $=$ GREENWAY	0.000 af	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 149.73' @ 13.11 hrs Surf.Area= 19,081 sf Storage= 39,373 cf
Plug-Flow detention time $=41.3 \mathrm{~min}$ calculated for 9.763 af (100% of inflow)
Center-of-Mass det. time $=40.0 \mathrm{~min}(1,031.2-991.2)$

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	146.00	110,744 cf	Custom Stage Data (Prismatic)Listed below (Recalc)

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
146.00	3,480	0	0
147.00	6,760	5,120	5,120
148.00	10,685	8,723	13,843
149.00	15,260	12,973	26,815
150.00	20,485	17,873	44,688
151.00	28,355	24,420	69,108
152.00	29,175	28,765	97,873
152.42	32,120	12,872	110,744

Device	Routing	Invert	Outlet Devices
\#1	Primary	146.00'	24.0" Round Culvert
			$\mathrm{L}=140.0{ }^{\prime} \mathrm{RCP}$, end-section conforming to fill, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 146.00' 145.50 ' S=0.0036 '/' Cc= 0.900
			$\mathrm{n}=0.013$ Concrete pipe, bends \& connections, Flow Area= 3.14 sf
\#2	Secondary	152.00'	115.0' long x 50.0' breadth Broad-Crested Rectangular Weir Head (feet) $0.20 \quad 0.400 .60 \quad 0.801 .001 .201 .401 .60$
			$\begin{array}{lllllllll}\text { Coef. (English) } & 2.68 & 2.70 & 2.70 & 2.64 & 2.63 & 2.64 & 2.64 & 2.63\end{array}$

Primary OutFlow Max=12.34 cfs @ 12.08 hrs HW=148.57' TW=147.84' (Dynamic Tailwater)
$L_{1=C u l v e r t ~(O u t l e t ~ C o n t r o l s ~}^{12.34}$ cfs @ 3.97 fps)
Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=146.00' TW=145.00' (Dynamic Tailwater)
L2=Broad-Crested Rectangular Weir(Controls 0.00 cfs)

Summary for Pond 1PP: WEST GREENWAY

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 149.08' @ 13.12 hrs Surf.Area= 60,696 sf Storage $=147,885 \mathrm{cf}$
Plug-Flow detention time $=115.6 \mathrm{~min}$ calculated for 15.553 af (100% of inflow)
Center-of-Mass det. time $=110.1 \mathrm{~min}(1,055.0-945.0)$

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	145.00	319,950 cf	Custom Stage Data (Prismatic)Listed below (Recalc)

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
145.00	13,590	0	0
146.00	24,145	18,868	18,868
147.00	35,350	29,748	48,615
148.00	47,205	41,278	89,893
149.00	59,705	53,455	143,348
150.00	72,855	66,280	209,628
151.00	78,910	75,883	285,510
151.42	85,090	34,440	319,950

Device	Routing	Invert	Outlet Devices
\#1	Primary	145.00'	24.0" Round Culvert
			$\mathrm{L}=188.0$ ' RCP, end-section conforming to fill, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 145.00' 144.50 ' S=0.0027 '/' Cc= 0.900
			$\mathrm{n}=0.013$ Concrete pipe, bends \& connections, Flow Area=3.14 sf
\#2	Secondary	151.00'	115.0' long x 50.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.200 .400 .600 .801 .001 .201 .401 .60
			Coef. (English) 2.682 .702 .702 .642 .632 .642 .642 .63

Primary OutFlow Max=18.67 cfs @ 14.09 hrs HW=148.98' TW=146.88' (Dynamic Tailwater)
—1=Culvert (Outlet Controls 18.67 cfs @ 5.94 fps)
Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=145.00' TW=144.00' (Dynamic Tailwater)
—2=Broad-Crested Rectangular Weir(Controls 0.00 cfs)

Summary for Pond 1QP: WEST GREENWAY

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 147.43' @ 12.46 hrs Surf.Area= 52,531 sf Storage= 111,139 cf
Plug-Flow detention time $=85.0 \mathrm{~min}$ calculated for 20.277 af (98% of inflow)
Center-of-Mass det. time $=58.6 \mathrm{~min}(1,050.2-991.6)$

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	144.00^{\prime}	$319,950 \mathrm{cf}$	Custom Stage Data (Prismatic)Listed below (Recalc)

Elevation (feet)	Surf.Area $($ sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
144.00	13,590	0	0
145.00	24,145	18,868	18,868
146.00	35,350	29,748	48,615
147.00	47,205	41,278	89,893
148.00	59,705	53,455	143,348
149.00	72,855	66,280	209,628
150.00	78,910	75,883	285,510
150.42	85,090	34,440	319,950

Device	Routing	Invert	Outlet Devices
\#1	Primary	144.00'	36.0" Round Culvert
			$\mathrm{L}=504.0^{\prime} \mathrm{RCP}$, end-section conforming to fill, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 144.00' $138.00^{\prime} \quad \mathrm{S}=0.0119^{\prime} / / \quad \mathrm{Cc}=0.900$
\#2	Device 1	145.00'	36.0" W \times 24.0" H Vert. Orifice/Grate $\mathrm{C}=0.600$
			Limited to weir flow at low heads
\#3	Device 1	148.00'	24.0" x 24.0" Horiz. Orifice/Grate C= 0.600
			Limited to weir flow at low heads
\#4	Secondary	149.00'	115.0' long x 50.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.200 .400 .600 .801 .001 .201 .401 .60
			Coef. (English) 2.682 .702 .702 .642 .632 .642 .642 .63

Primary OutFlow Max=33.71 cfs @ 12.46 hrs HW=147.43' TW=143.04' (Dynamic Tailwater)
-1=Culvert (Passes 33.71 cfs of 47.23 cfs potential flow)
-2=Orifice/Grate (Orifice Controls 33.71 cfs @ 5.62 fps)
—3=Orifice/Grate (Controls 0.00 cfs)
Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=144.00' TW=133.50' (Dynamic Tailwater)
4=Broad-Crested Rectangular Weir(Controls 0.00 cfs)

Summary for Pond 2AP: FRENCH'S STREAM WEST BRANCH

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 146.51' @ 13.86 hrs Surf.Area= 167,968 sf Storage= 199,436 cf
Plug-Flow detention time $=10.1$ min calculated for 58.793 af (100% of inflow)
Center-of-Mass det. time= 10.1 min (916.5-906.4)

| Volume | Invert | Avail.Storage | Storage Description |
| ---: | ---: | ---: | ---: | ---: |
| $\# 1$ | 141.70 ' | $1,815,201$ cf | Custom Stage Data (Pr |
| Clevation
 (feet) | Surf.Area
 (sq-ft) | Inc.Store
 (cubic-feet) | Cum.Store
 (cubic-feet) |
| 141.70 | 0 | 0 | 0 |
| 144.00 | 6,640 | 7,636 | 7,636 |
| 145.00 | 57,230 | 31,935 | 39,571 |
| 146.00 | 117,540 | 87,385 | 126,956 |
| 147.00 | 216,860 | 167,200 | 294,156 |
| 148.00 | 359,360 | 288,110 | 582,266 |
| 149.00 | 640,140 | 499,750 | $1,082,016$ |
| 150.00 | 826,230 | 733,185 | $1,815,201$ |

Device	Routing	Invert	Outlet Devices
\#1	Primary	141.70'	48.0" Round Culvert
			$\mathrm{L}=126.0$ ' RCP, end-section conforming to fill, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 141.70' / 141.60' S=0.0008'/l' Cc=0.900 $\mathrm{n}=0.013$, Flow Area= 12.57 sf
\#2	Secondary	141.70'	48.0" Round Culvert
			$\mathrm{L}=126.0^{\prime} \mathrm{RCP}$, end-section conforming to fill, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 141.70' / 141.50' S=0.0016 '/' Cc= 0.900
			$\mathrm{n}=0.013$, Flow Area= 12.57 sf

Primary OutFlow Max=77.34 cfs @ 13.86 hrs HW=146.51' TW=143.80' (Dynamic Tailwater)
L-1=Culvert (Barrel Controls 77.34 cfs @ 6.49 fps)
Secondary OutFlow Max=80.26 cfs @ 13.86 hrs HW=146.51' TW=143.80' (Dynamic Tailwater)
—2=Culvert (Barrel Controls 80.26 cfs @ 6.73 fps)

Summary for Pond 2BP: EXISTING BASIN

Routed to Pond 2AP : FRENCH'S STREAM WEST BRANCH
Secondary = $\quad 0.00$ cfs @ 0.00 hrs, Volume= 0.000 af Routed to Pond 2AP : FRENCH'S STREAM WEST BRANCH

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 149.13' @ 12.56 hrs Surf.Area= 81,286 sf Storage $=266,655$ cf
Plug-Flow detention time $=129.2$ min calculated for 14.696 af (98% of inflow)
Center-of-Mass det. time $=115.8 \mathrm{~min}(888.7-772.9)$

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	143.00	482,855 cf	Custom Stage Data (Prismatic)Listed below (Recalc)

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
143.00	10,920	0	0
144.00	16,580	13,750	13,750
145.00	28,700	22,640	36,390
146.00	39,560	34,130	70,520
147.00	53,515	46,538	117,058
148.00	71,930	62,723	179,780
149.00	80,230	76,080	255,860
150.00	88,130	84,180	340,040
151.00	95,000	91,565	431,605
151.50	110,000	51,250	482,855

Device	Routing	Invert	Outlet Devices
\#1	Primary	144.00'	24.0" Round Culvert
			$\mathrm{L}=79.0$ ' RCP, end-section conforming to fill, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 144.00' / 143.21' S=0.0100 '/' Cc= 0.900 $n=0.013$. Flow Area $=3.14 \mathrm{sf}$
\#2	Secondary	150.00'	10.0' long x 20.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.200 .400 .600 .801 .001 .201 .401 .60
			Coef. (English) 2.682 .702 .702 .642 .632 .642 .642 .63

Primary OutFlow Max=30.75 cfs @ 12.56 hrs HW=149.13' TW=144.93' (Dynamic Tailwater)
—1=Culvert (Inlet Controls 30.75 cfs @ 9.79 fps)
Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=143.00' TW=141.70' (Dynamic Tailwater)
$\complement_{2=B r o a d-C r e s t e d ~ R e c t a n g u l a r ~ W e i r(~ C o n t r o l s ~} 0.00$ cfs)

Summary for Pond 2CP: EXISTING PARKWAY BASIN

Existing basin information taken from Weymouth Patriot Parkway Utility As-Builts, prepared by LM Heavy Civil Construction LLC, dated October 15, 2018.

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 146.75' @ 12.43 hrs Surf.Area= 30,311 sf Storage= 123,632 cf
Plug-Flow detention time= 269.8 min calculated for 2.567 af (52% of inflow)
Center-of-Mass det. time= 151.9 min (913.9 - 761.9)

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	138.00^{\prime}	$240,905 \mathrm{cf}$	Custom Stage Data (Prismatic)Listed below (Recalc)

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
138.00	730	0	0
139.00	1,695	1,213	1,213
140.00	3,150	2,423	3,635
141.00	6,840	4,995	8,630
142.00	12,885	9,863	18,493
143.00	17,405	15,145	33,638
144.00	21,190	19,298	52,935
145.00	24,465	22,828	75,763
146.00	27,780	26,123	101,885
147.00	31,160	29,470	131,355
148.00	34,590	32,875	164,230
149.00	38,295	36,443	200,673
150.00	42,170	40,233	240,905

Device	Routing	Invert	Outlet Devices
\#1	Primary	142.30'	30.0" Round Culvert
			$\mathrm{L}=65.0^{\prime}$ RCP, end-section conforming to fill, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 142.30' / 141.50' S=0.0123 '/' Cc= 0.900 $\mathrm{n}=0.013$, Flow Area= 4.91 sf
\#2	Device 1	146.00'	24.0" $\times 24.0$ " Horiz. Orifice/Grate $\mathrm{C}=0.600$
			Limited to weir flow at low heads

Primary OutFlow Max=16.66 cfs @ 12.43 hrs HW=146.75' TW=141.46' (Dynamic Tailwater)
-1=Culvert (Passes 16.66 cfs of 42.27 cfs potential flow)
$\left\llcorner_{2=O r i f i c e / G r a t e}\right.$ (Orifice Controls 16.66 cfs @ 4.17 fps)

Summary for Pond 2DP: EXISTING PARKWAY BASIN

Existing basin information taken from Weymouth Patriot Parkway Utility As-Builts, prepared by LM Heavy Civil Construction LLC, dated October 15, 2018.

Routed to Pond 2EP : FRENCH'S STREAM WEST BRANCH
Secondary = $\quad 0.00 \mathrm{cfs}$ @ 0.00 hrs , Volume= $\quad 0.000$ af Routed to Pond 2EP : FRENCH'S STREAM WEST BRANCH

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 146.18' @ 24.34 hrs Surf.Area= 10,518 sf Storage= 37,608 cf
Plug-Flow detention time=(not calculated: initial storage exceeds outflow)
Center-of-Mass det. time= (not calculated: no outflow)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=139.00' TW=138.00' (Dynamic Tailwater)
$-1=$ Culvert (Controls 0.00 cfs)
$L_{2=O r i f i c e / G r a t e ~(C o n t r o l s ~} 0.00 \mathrm{cfs}$)
Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=139.00' TW=138.00' (Dynamic Tailwater)
$\complement_{3}=$ Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Pond 2EP: FRENCH'S STREAM WEST BRANCH

Per site visit outlet consists of one 60-inch culvert.

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
138.00	0	0	0
140.00	9,600	9,600	9,600
141.00	13,135	11,368	20,968
142.00	35,665	24,400	45,368
143.00	47,280	41,473	86,840
144.00	58,400	52,840	139,680
145.00	71,585	64,993	204,673
146.00	85,230	78,408	283,080
147.00	106,515	95,873	378,953
148.00	183,900	145,208	524,160

Device Routing Invert Outlet Devices
\#1 Primary 138.00' 60.0" Round Culvert
$\mathrm{L}=380.0^{\prime}$ RCP, end-section conforming to fill, $\mathrm{Ke}=0.500$
Inlet / Outlet Invert= 138.00' / 135.70' S=0.0061 '/' Cc= 0.900
$\mathrm{n}=0.013$ Concrete pipe, bends \& connections, Flow Area= 19.63 sf
Primary OutFlow Max=173.89 cfs @ 14.15 hrs HW=143.88' TW=131.45' (Dynamic Tailwater)
L-1=Culvert (Inlet Controls 173.89 cfs @ 8.86 fps)

Summary for Pond 2FP: FRENCH'S STREAM WEST BRANCH

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 131.47' @ 13.73 hrs Surf.Area= 38,299 sf Storage= 70,508 cf
Plug-Flow detention time $=5.1 \mathrm{~min}$ calculated for 200.400 af (100% of inflow)
Center-of-Mass det. time $=4.5 \mathrm{~min}(1,104.3-1,099.7)$

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	125.90^{\prime}	665,278 cf	Custom Stage Data (Prismatic)Listed below (Recalc)

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
125.90	0	0	0
130.00	17,650	36,182	36,182
131.00	22,340	19,995	56,177
132.00	56,105	39,223	95,400
133.00	76,835	66,470	161,870
134.00	93,610	85,223	247,092
135.00	111,175	102,393	349,485
136.00	153,700	132,438	481,922
137.00	213,010	183,355	665,278

Device	Routing	Invert	Outlet Devices
\#1	Primary	127.60'	60.0" Round Culvert
			$\mathrm{L}=34.0$ ' RCP, end-section conforming to fill, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 126.60' / 127.60' S=-0.0294 '/' Cc= 0.900 $\mathrm{n}=0.013$, Flow Area= 19.63 sf
\#2	Secondary	126.70'	72.0" Round Culvert
			$\mathrm{L}=34.0{ }^{\prime} \mathrm{RCP}$, end-section conforming to fill, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 125.90' / 126.70' S=-0.0235 '/' Cc= 0.900 $\mathrm{n}=0.013$, Flow Area $=28.27 \mathrm{sf}$
\#3	Tertiary	135.50'	10.0' long x 20.0' breadth Spillway over Path
			Head (feet) 0.200 .400 .600 .801 .001 .201 .401 .60
			Coef. (English) 2.682 .702 .702 .642 .632 .642 .642 .63

Primary OutFlow Max=107.74 cfs @ 13.73 hrs HW=131.47' TW=0.00' (Dynamic Tailwater) -1=Culvert (Barrel Controls 107.74 cfs @ 7.01 fps)

Secondary OutFlow Max=158.54 cfs @ 13.73 hrs HW=131.47' TW=0.00' (Dynamic Tailwater)
—2=Culvert (Barrel Controls 158.54 cfs @ 7.54 fps)
Tertiary OutFlow Max=0.00 cfs @ $0.00 \mathrm{hrs} \mathrm{HW}=125.90^{\prime}$ TW=0.00' (Dynamic Tailwater)
$\complement_{3=S p i l l w a y ~ o v e r ~ P a t h ~(~ C o n t r o l s ~} 0.00 \mathrm{cfs}$)

Summary for Pond 2IP: PROPOSED PHASE 1 BASIN

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 144.31' @ 15.32 hrs Surf.Area= 151,040 sf Storage= 708,876 cf
Plug-Flow detention time $=435.2$ min calculated for 22.248 af (80% of inflow)
Center-of-Mass det. time $=335.0 \mathrm{~min}(1,252.5-917.6)$

Volume	Invert Av	Avail.Storage Sto	torage Description
\#1	139.00' 1,31	48 cf Custom	tage Data (Pr
Elevation (feet)	Surf.Area $(\mathrm{sq}-\mathrm{ft})$	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
139.00	116,400	0	0
140.00	122,800	119,600	119,600
141.00	129,270	126,035	245,635
142.00	135,790	132,530	378,165
143.00	142,360	139,075	517,240
144.00	148,990	145,675	662,915
145.00	155,680	152,335	815,250
146.00	162,400	159,040	974,290
147.00	169,220	165,810	1,140,100
148.00	176,075	172,648	1,312,748

Device	Routing	Invert	Outlet Devices
\#1	Primary	139.00'	36.0" Round Culver
			$\mathrm{L}=100.0^{\prime} \mathrm{RCP}$, end-section conforming to fill, $\mathrm{Ke}=0.500$ Inlet / Outlet Invert= 139.00' / 137.00' S=0.0200'/l' Cc=0.900 $\mathrm{n}=0.013$, Flow Area $=7.07 \mathrm{sf}$
\#2	Device 1	141.00'	36.0" W x 10.0" H Vert. Orifice/Grate C= 0.600
			Limited to weir flow at low heads
\#3	Device 1	142.50'	36.0" W x 12.0" H Vert. Orifice/Grate C= 0.600
			Limited to weir flow at low heads
\#4	Device 1	144.00'	36.0 " 36.0 " Horiz. Orifice/Grate $\mathrm{C}=0.600$
			Limited to weir flow at low heads
\#5	Secondary	146.00'	20.0' long x 20.0' breadth Broad-Crested Rectangular Weir
			Head (feet) $0.20 \quad 0.40 \quad 0.60 \quad 0.801 .001 .201 .401 .60$
			Coef. (English) 2.682 .702 .702 .642 .632 .642 .642 .63

Primary OutFlow Max=36.36 cfs @ 15.85 hrs HW=144.25' TW=142.63' (Dynamic Tailwater) $1=$ Culvert (Passes 36.36 cfs of 43.40 cfs potential flow)
-2=Orifice/Grate (Orifice Controls 15.35 cfs @ 6.14 fps)
$-3=$ Orifice/Grate (Orifice Controls 16.01 cfs @ 5.34 fps)
4=Orifice/Grate (Weir Controls 4.99 cfs @ 1.64 fps)
Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=139.00' TW=138.00' (Dynamic Tailwater)
$\complement_{5=B r o a d-C r e s t e d ~ R e c t a n g u l a r ~ W e i r(~ C o n t r o l s ~} 0.00$ cfs)

Summary for Pond 2JP: PROPOSED BASIN

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 163.62' @ 12.44 hrs Surf.Area= 34,830 sf Storage= 84,092 cf
Plug-Flow detention time $=130.9$ min calculated for 4.451 af (93% of inflow)
Center-of-Mass det. time= $93.5 \mathrm{~min}(894.0-800.5)$

Primary OutFlow Max=18.29 cfs @ 12.44 hrs HW=163.62' TW=144.73' (Dynamic Tailwater)
L-1=Culvert (Passes 18.29 cfs of 19.23 cfs potential flow)
-2=Orifice/Grate (Orifice Controls 18.29 cfs @ 6.10 fps)
-3=Orifice/Grate (Controls 0.00 cfs)
Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=161.00' TW=141.70' (Dynamic Tailwater)
4=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Pond 2KP: PROPOSED BASIN

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 150.92' @ 12.73 hrs Surf.Area= 51,905 sf Storage $=135,380 \mathrm{cf}$
Plug-Flow detention time $=247.9 \mathrm{~min}$ calculated for 4.879 af (83% of inflow)
Center-of-Mass det. time $=178.2 \mathrm{~min}$ (988.0-809.7)

Primary OutFlow Max=10.01 cfs @ 12.73 hrs HW=150.92' TW=130.90' (Dynamic Tailwater)
-1=Culvert (Passes 10.01 cfs of 40.83 cfs potential flow)
-2=Orifice/Grate (Orifice Controls 9.33 cfs @ 6.22 fps)

- $\mathbf{3}=$ Orifice/Grate (Orifice Controls 0.68 cfs @ 1.33 fps)
-4=Orifice/Grate (Controls 0.00 cfs)
Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=148.00' TW=125.90' (Dynamic Tailwater)
${ }^{4}$ 5=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Pond 2LP: PROPOSED BASIN

Inflow Area $=$	10.690 ac,	0.00% Impervious, Inflow Depth $=3.76 " \mathrm{for} 10$-year event	
Inflow	$=$	$46.03 \mathrm{cfs} @$	12.09 hrs, Volume $=$
Outflow	$=$	$17.21 \mathrm{cfs} @$	12.34 hrs , Volume $=$
Primary	$=$	$17.21 \mathrm{cfs} @$	12.34 hrs , Volume $=$

Routed to Pond 2FP : FRENCH'S STREAM WEST BRANCH
Secondary = $\quad 0.00$ cfs @ 0.00 hrs, Volume= 0.000 af
Routed to Pond 2FP : FRENCH'S STREAM WEST BRANCH
Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 157.32' @ 12.34 hrs Surf.Area= 23,879 sf Storage= 50,005 cf
Plug-Flow detention time $=107.0$ min calculated for 3.127 af (93% of inflow)
Center-of-Mass det. time= $71.4 \min (868.6-797.2)$

Primary OutFlow Max=17.21 cfs @ 12.34 hrs HW=157.32' TW=130.20' (Dynamic Tailwater)
—1=Culvert (Barrel Controls 17.21 cfs @ 5.92 fps)
-2=Orifice/Grate (Passes < 16.53 cfs potential flow)
-3=Orifice/Grate (Passes < 1.78 cfs potential flow)
-4=Orifice/Grate (Controls 0.00 cfs)
Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=155.00' TW=125.90' (Dynamic Tailwater)
${ }^{-}$5=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Pond 2MP: PROPOSED BASIN

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 180.70' @ 12.18 hrs Surf.Area= 19,786 sf Storage= $62,372 \mathrm{cf}$
Plug-Flow detention time $=59.9$ min calculated for 5.899 af (97% of inflow)
Center-of-Mass det. time $=43.5 \mathrm{~min}$ (840.7-797.2)

Primary OutFlow Max=53.99 cfs @ 12.18 hrs HW=180.70' TW=151.92' (Dynamic Tailwater)
L1=Culvert (Passes 53.99 cfs of 64.64 cfs potential flow)
-2=Orifice/Grate (Orifice Controls 12.40 cfs @ 8.26 fps)
-3=Orifice/Grate (Orifice Controls 18.75 cfs @ 6.25 fps)
-4=Orifice/Grate (Weir Controls 22.85 cfs @ 2.73 fps)
Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=177.00' TW=150.00' (Dynamic Tailwater)
${ }^{4}$ 5=Broad-Crested Rectangular Weir(Controls 0.00 cfs)

Summary for Pond 3AP: FRENCH'S STREAM EAST BRANCH

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 146.83' @ 13.30 hrs Surf.Area= 28,525 sf Storage= $31,582 \mathrm{cf}$
Plug-Flow detention time $=5.1 \mathrm{~min}$ calculated for 14.402 af (100% of inflow)
Center-of-Mass det. time $=4.6 \min (894.7-890.1)$

Summary for Pond 3BP: FRENCH'S STREAM EAST BRANCH

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 135.16' @ 13.77 hrs Surf.Area= 58,726 sf Storage $=164,766$ cf
Plug-Flow detention time= 12.1 min calculated for 43.174 af (100% of inflow)
Center-of-Mass det. time= $12.1 \mathrm{~min}(927.1$-914.9)

Summary for Subcatchment 1A:

Runoff $=\quad 4.56$ cfs @ 12.08 hrs, Volume= 0.347 af, Depth= 5.27"
Routed to Pond 1AP : SPORTS COMPLEX INFILTRATION BASIN
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 25-year Rainfall=6.20"

Summary for Subcatchment 1B:

Runoff $=5.13 \mathrm{cfs} @ 12.08 \mathrm{hrs}$, Volume= $\quad 0.386$ af, Depth= $5.15^{\prime \prime}$
Routed to Pond 1BP : SPORTS COMPLEX INFILTRATION BASIN
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 25-year Rainfall=6.20"

Area		CN	Description			
0.	800	98	Pavement			
	100	39	>75\% Grass cover, Good, HSG A			
	. 900	91	Weighted Average			
	100		11.11\% Pervious Area			
	800		88.8	9\% Imper	ious Area	
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$			Slope (ft/ft) (ft/ft)	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \\ \hline \end{array}$	Description
6.0						Direct Entry

Summary for Subcatchment 1C:

Assumed pipe channel has slope 0.005 since no data given
Runoff $=68.81 \mathrm{cfs} @ 12.61 \mathrm{hrs}$, Volume= 10.770 af, Depth= 4.82"

Routed to Pond 1CP : MEMORIAL GROVE AVE. BASIN
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 25 -year Rainfall $=6.20$ "

[^22]
Summary for Subcatchment 1D:

Runoff $=27.98$ cfs @ 13.00 hrs , Volume= $\quad 5.881$ af, Depth= 2.41"
Routed to Pond 1DP : UPSTREAM DOGLEG
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 25-year Rainfall=6.20"

[^23]
Summary for Subcatchment 1E:

Runoff $=535.14$ cfs @ 12.09 hrs, Volume= 38.416 af, Depth= 4.17"
Routed to Pond 1IP : TACAN
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 25-year Rainfall=6.20"

Summary for Subcatchment 1F:

Runoff $=51.41$ cfs @ 12.09 hrs, Volume= 3.732 af, Depth= 4.49"
Routed to Pond 1FP : EXISTING PARKWAY BASIN
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 25-year Rainfall=6.20"

Area	ac)	CN	Description			
5	. 070	98	Pavement			
0	410	100	Open Water			
	880	61	>75\% Grass cover, Good, HSG B			
	610	74	>75\% Grass cover, Good, HSG C			
	970	85	Weighted Average			
	490		45.04\% Pervious Area			
	480		54.96\% Impervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Leng (fe		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.0						Direct Entry

Summary for Subcatchment 1G:

Runoff $=10.61$ cfs @ 12.37 hrs, Volume= 1.396 af, Depth= 5.27"
Routed to Pond 1GP : SPORTS COMPLEX BASIN
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 25-year Rainfall=6.20"

Area	(ac)	N Desc	cription		
$\begin{aligned} & 1 . \\ & 0 . \\ & 0 . \end{aligned}$	850		ment		
	180	92 Weig	2hted Ave	age	
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description
$\begin{array}{r} 26.5 \\ 1.8 \end{array}$	346	0.0050	3.21	2.52	Direct Entry, Artificial Turf Pipe Channel, 12.0" Round Area= 0.8 sf Perim=3.1' r=0.25' $\mathrm{n}=0.013$ Corrugated PE , smooth interior
0.6	116	0.0050	3.21	2.52	Pipe Channel, 12.0" Round Area= 0.8 sf Perim=3.1' r= 0.25^{\prime} $\mathrm{n}=0.013$ Corrugated PE , smooth interior
0.0	11	0.0900	13.61	10.69	Pipe Channel, 12.0" Round Area= 0.8 sf Perim=3.1' $\mathrm{r}=0.25^{\prime}$ $\mathrm{n}=0.013$ Concrete pipe, bends \& connections
0.2	40	0.0050	4.20	7.43	Pipe Channel, 18.0" Round Area= 1.8 sf Perim=4.7' r=0.38' $\mathrm{n}=0.013$ Concrete pipe, bends \& connections
0.1	18	0.0050	4.20	7.43	Pipe Channel, 18.0" Round Area= 1.8 sf Perim=4.7' r=0.38' $\mathrm{n}=0.013$ Concrete pipe, bends \& connections

Summary for Subcatchment 1H:

Runoff = 7.80 cfs @ 12.08 hrs, Volume= 0.604 af, Depth= 5.49"
Routed to Pond 1HP : SPORTS COMPLEX BASIN
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 25-year Rainfall=6.20"

Area	(ac)	CN	Description			
1.	000	98	Pavement			
0.	090	85	Artificial Turf			
	230	80	>75\% Grass cover, Good, HSG D			
	320	94	Weighted Average			
	320		24.24\% Pervious Area			
	. 000		75.76\% Impervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.0						Direct Entry

Summary for Subcatchment 1I:

Runoff $=96.96$ cfs @ 13.40 hrs, Volume $=25.524$ af, Depth= 2.78 "
Routed to Pond 1IP : TACAN
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 25-year Rainfall=6.20"

[^24]
Summary for Subcatchment 1J:

Runoff $=27.35$ cfs @ 12.08 hrs, Volume= 2.236 af, Depth= 5.96"
Routed to Pond 1LP : CENTRAL GREENWAY
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 25-year Rainfall=6.20"

	Area (ac)	CN	Description
*	4.500	98	Pavement
	4.500		100.00\% Impervious Area

| Tc
 (min) | Length
 (feet) | Slope
 $(\mathrm{ft} / \mathrm{ft})$ | Velocity
 $(\mathrm{ft} / \mathrm{sec})$ | Capacity
 (cfs) |
| ---: | ---: | ---: | ---: | :--- | Description | Direct Entry, |
| :--- |

Summary for Subcatchment 1K:

Runoff = 138.09 cfs @ 12.14 hrs, Volume= 11.621 af, Depth= 4.82"
Routed to Pond 1LP : CENTRAL GREENWAY
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 25-year Rainfall=6.20"

Area	ac) C	Description			
28	940	Proposed Development Area			
28.940		100.00\% Pervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity (ft/sec)	Capacity (cfs)	Description
10.0					Direct Entry

Summary for Subcatchment 1L:

Runoff $=137.82$ cfs @ 12.14 hrs , Volume= 11.476 af, Depth= 4.60"
Routed to Pond 1LP : CENTRAL GREENWAY
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 25-year Rainfall=6.20"

Summary for Subcatchment 1M:

Runoff $=46.50$ cfs @ 12.14 hrs, Volume= 3.855 af, Depth= 4.49"
Routed to Pond 1MP : CENTRAL GREENWAY
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 25-year Rainfall=6.20"

Summary for Subcatchment 1N:

Assumed slope of 0.002
Runoff $=\quad 116.05$ cfs @ 12.14 hrs, Volume $=$
Routed to Pond 1 NP $:$ WEST GREENWAY

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 25 -year Rainfall $=6.20$ "

Summary for Subcatchment 10:

Runoff $=40.74$ cfs @ 12.09 hrs, Volume $=2.986$ af, Depth= 4.71"
Routed to Pond 1OP : WEST GREENWAY
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 25-year Rainfall=6.20"

Summary for Subcatchment 1P:

Runoff = 102.19 cfs @ 12.09 hrs, Volume= 7.491 af, Depth= 4.71"
Routed to Pond 1PP : WEST GREENWAY
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 25-year Rainfall=6.20"

Area	(ac)	CN	Des	cription		
$\begin{array}{r} 17.420 \\ 1.670 \\ \hline \end{array}$		88	Proposed Development Area$>75 \%$ Grass cover, Good, HSG C			
		74				
19.090		87	Weighted Average 100.00\% Pervious Area			
	090					
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Len (fe		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.0						Direct Entry

Summary for Subcatchment 1Q:

Runoff $=90.63$ cfs @ 12.09 hrs, Volume= 6.643 af, Depth= 4.71"
Routed to Pond 1QP : WEST GREENWAY
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 25-year Rainfall=6.20"

Area	(ac)	CN	Des	cription		
$\begin{array}{r} 15.260 \\ 1.670 \\ \hline \end{array}$		88	Proposed Development Area$>75 \%$ Grass cover, Good, HSG C			
		74				
16.930		87	Weighted Average			
16.930			100.00\% Pervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Len (fe		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.0						Direct Entry

Summary for Subcatchment 2A:

Runoff = 171.79 cfs @ 13.29 hrs, Volume= 43.197 af, Depth= 3.65"
Routed to Pond 2AP : FRENCH'S STREAM WEST BRANCH
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 25-year Rainfall=6.20"

Summary for Subcatchment 2B:

Runoff $=241.61$ cfs @ 12.08 hrs, Volume=
Routed to Pond 2BP : EXISTING BASIN
18.728 af, Depth= 5.49"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 25-year Rainfall=6.20"

Summary for Subcatchment 2C:

Runoff = 76.39 cfs @ 12.08 hrs, Volume= 6.065 af, Depth= 5.73"
Routed to Pond 2CP : EXISTING PARKWAY BASIN
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 25-year Rainfall=6.20"

Summary for Subcatchment 2D-1:

Runoff $=12.76$ cfs @ 12.08 hrs, Volume= 1.043 af, Depth= 5.96"
Routed to Pond 2DP : EXISTING PARKWAY BASIN
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 25-year Rainfall=6.20"

| | Area (ac) | CN |
| ---: | ---: | :--- | Description \quad| * 2.100 |
| :--- |
| 2.100 |

Tc (min)	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity $(\mathrm{ft} / \mathrm{sec})$	Capacity (cfs)

Summary for Subcatchment 2D-2:

Runoff $=0.14$ cfs @ 12.33 hrs, Volume= 0.028 af, Depth= $0.50^{\prime \prime}$
Routed to Pond 2DP : EXISTING PARKWAY BASIN
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 25-year Rainfall=6.20"

Area (ac)	CN	Description
0.670	39	$>75 \%$ Grass cover, Good, HSG A
0.670		100.00% Pervious Area

Tc (min)	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity $(\mathrm{ft} / \mathrm{sec})$	Capacity (cfs)

Summary for Subcatchment 2E:

Runoff $=38.94$ cfs @ 13.28 hrs, Volume= 9.468 af, Depth= 2.32"
Routed to Pond 2EP : FRENCH'S STREAM WEST BRANCH
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 25-year Rainfall=6.20"

89.9 1,134 Total

Summary for Subcatchment 2F:

Runoff $=\quad 65.37$ cfs @ 12.98 hrs, Volume $=13.370$ af, Depth= 2.59"
Routed to Pond 2FP : FRENCH'S STREAM WEST BRANCH
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 25-year Rainfall=6.20"

$70.4 \quad 775$ Total

Summary for Subcatchment 2G:

Assumed Tc value
Runoff $=\quad 23.43$ cfs @ 13.47 hrs, Volume $=\quad 6.803$ af, Depth= 4.93"
Routed to Pond 2AP : FRENCH'S STREAM WEST BRANCH

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 25 -year Rainfall $=6.20$

Summary for Subcatchment 2H:

Assumed Tc value
Runoff $=\quad 10.69 \mathrm{cfs} @ 13.60 \mathrm{hrs}$, Volume $=$
Routed to Pond 2AP:FRENCH'S STREAM WEST BRANCH

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 25 -year Rainfall $=6.20$ "

Summary for Subcatchment 21-1:

Runoff $=113.95$ cfs @ 12.14 hrs, Volume= $\quad 9.589$ af, Depth= 4.82"
Routed to Pond 2IP : PROPOSED PHASE 1 BASIN
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 25-year Rainfall=6.20"

Area	ac)	Description			
23.880		Proposed Development Area			
	880	100	00\% Perv	ous Area	
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	$\begin{gathered} \text { Capacity } \\ \text { (cfs) } \end{gathered}$	Description
10.0					Direct Entry

Summary for Subcatchment 2J:

Runoff $=84.15 \mathrm{cfs} @ 12.09 \mathrm{hrs}$, Volume=
Routed to Pond 2JP : PROPOSED BASIN
6.169 af, Depth= 4.71"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 25-year Rainfall=6.20"

Area	(ac)	CN	Des	cription		
$\begin{array}{r} 14.430 \\ 1.290 \\ \hline \end{array}$		$\begin{aligned} & \hline 88 \\ & 80 \end{aligned}$	Proposed Development Area$>75 \%$ Grass cover, Good, HSG D			
$\begin{aligned} & 15.720 \\ & 15.720 \end{aligned}$		87	Weighted Average 100.00\% Pervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)		Slope (ft/ft)	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description
6.0						Direct Entry

Summary for Subcatchment 2K:

Runoff = 106.14 cfs @ 12.09 hrs, Volume= $\quad 7.672$ af, Depth= 4.38"
Routed to Pond 2KP : PROPOSED BASIN
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 25-year Rainfall=6.20"

Area	(ac)	CN	Des	cription		
$\begin{array}{r} 12.610 \\ 8.390 \end{array}$		$\begin{aligned} & 88 \\ & 77 \end{aligned}$	Proposed Development Area Woods, Good, HSG D			
$\begin{aligned} & 21.000 \\ & 21.000 \end{aligned}$		84	Weighted Average 100.00\% Pervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)		Slope (ft/ft)	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description
6.0						Direct Entry

Summary for Subcatchment 2L:

Runoff $=58.22$ cfs @ 12.09 hrs, Volume= 4.293 af, Depth= 4.82"
Routed to Pond 2LP : PROPOSED BASIN
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 25-year Rainfall=6.20"

Area (ac)	CN	Description
*	10.690	88
10.690		Proposed Development Area

| Tc
 (min) | Length
 (feet) | Slope
 $(\mathrm{ft} / \mathrm{ft})$ | Velocity
 $(\mathrm{ft} / \mathrm{sec})$ | Capacity
 (cfs) |
| ---: | ---: | ---: | ---: | :--- | Description | Direct Entry, |
| :--- |

Summary for Subcatchment 2M:

Runoff = 105.39 cfs @ 12.09 hrs, Volume= 7.770 af, Depth= 4.82"
Routed to Pond 2MP : PROPOSED BASIN
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 25-year Rainfall=6.20"

Area (ac)	CN	Description
19.350	88	Proposed Development Area
		100.00% Pervious Area

| Tc
 (min) | Length
 (feet) | Slope
 $(\mathrm{ft} / \mathrm{ft})$ | Velocity
 $(\mathrm{ft} / \mathrm{sec})$ | Capacity
 (cfs) |
| ---: | ---: | ---: | ---: | :--- | Description | Direct Entry, |
| :--- |

Summary for Subcatchment 3A:

Runoff $=93.55$ cfs @ 13.04 hrs, Volume= $\quad 19.350$ af, Depth= 3.76"
Routed to Pond 3AP : FRENCH'S STREAM EAST BRANCH
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 25-year Rainfall=6.20"

74.8 1,438 Total

Summary for Subcatchment 3B:

Runoff = 149.28 cfs @ 13.43 hrs, Volume= $\quad 39.057$ af, Depth= 3.55"
Routed to Pond 3BP : FRENCH'S STREAM EAST BRANCH
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 25-year Rainfall=6.20"

Summary for Subcatchment 21-2:

Runoff $=34.24$ cfs @ 12.14 hrs, Volume $=2.807$ af, Depth= 2.87"
Routed to Pond 2IP : PROPOSED PHASE 1 BASIN
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 25-year Rainfall=6.20"

Summary for Reach 1R: DP-1 TACAN OUTFALL

```
Inflow Area = 377.860 ac, 3.40% Impervious, Inflow Depth > 3.93" for 25-year event
Inflow = 77.39 cfs @ 16.48 hrs, Volume= 123.614 af
Outflow = 77.39 cfs @ 16.48 hrs, Volume= 123.614 af, Atten= 0%, Lag= 0.0 min
    Routed to Pond 2FP : FRENCH'S STREAM WEST BRANCH
```

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs

Summary for Reach 2R: DP-2 FRENCH'S STREAM WEST BRANCH
Inflow Area $=872.630$ ac, 11.83% Impervious, Inflow Depth > 3.71" for 25-year event
Inflow $=316.61$ cfs @ 13.50 hrs , Volume $=269.560 \mathrm{af}$
Outflow $=316.61$ cfs @ 13.50 hrs , Volume $=269.560 \mathrm{af}$, Atten= 0%, Lag $=0.0 \mathrm{~min}$
Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs

Summary for Reach 3R: DP-3 FRENCH'S STREAM EAST BRANCH

```
Inflow Area = 193.720 ac, 8.56% Impervious, Inflow Depth = 3.62" for 25-year event
Inflow = 222.14 cfs @ 13.58 hrs, Volume= 58.401 af
Outflow = 222.14 cfs @ 13.58 hrs, Volume= 58.401 af, Atten= 0%, Lag= 0.0 min
```

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs

Summary for Pond 1AP: SPORTS COMPLEX INFILTRATION BASIN

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 171.26' @ 12.07 hrs Surf.Area= 2,201 sf Storage= 2,832 cf
Plug-Flow detention time $=91.8 \mathrm{~min}$ calculated for 0.347 af (100% of inflow)
Center-of-Mass det. time $=91.8 \min (867.9-776.2)$

Volume	Invert	Avail.Storage	Storage Description
\#1A	168.50'	1,559 cf	24.83'W x 88.64'L x 2.33 'H Field A
			5,136 cf Overall - 1,238 cf Embedded = 3,898 cf $\times 40.0 \%$ Voids
\#2A	169.00'	1,238 cf	ADS_StormTech SC-310 +Capx 84 Inside \#1
			Effective Size= 28.9"W x 16.0"H => $2.07 \mathrm{sf} \times 7.12 \mathrm{~L}=14.7 \mathrm{c}$
			Overall Size=34.0"W x 16.0"H x 7.56'L with 0.44' Overlap
			84 Chambers in 7 Rows
\#3	168.50'	85 cf	4.00'D x 6.80'H CB-Impervious
\#4	175.20'	449 cf	Ponding at CB (Prismatic)Listed below (Recalc)

> 3,332 cf Total Available Storage

Storage Group A created with Chamber Wizard

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
175.20	10	0	0
176.00	300	124	124
176.50	1,000	325	449

Device	Routing	Invert	Outlet Devices
\#1	Primary	170.00'	18.0" Round Culvert
			$\mathrm{L}=13.0$ ' RCP, end-section conforming to fill, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 170.00' / 169.85' S=0.0115 '/' Cc= 0.900 $\mathrm{n}=0.013$. Flow Area $=1.77 \mathrm{sf}$
\#2	Discarded	168.50'	2.410 in/hr Exfiltration over Surface area Phase-In= $0.01{ }^{\prime}$

Discarded OutFlow Max=0.12 cfs @ $9.74 \mathrm{hrs} \mathrm{HW}=168.58$ ' (Free Discharge)
(Exfiltration Controls 0.12 cfs)
L2=Exfiltration (Exfiltration Controls 0.12 cfs)
Primary OutFlow Max=4.79 cfs @ 12.07 hrs HW=171.24' TW=151.99' (Dynamic Tailwater)
——1=Culvert (Barrel Controls 4.79 cfs @ 4.17 fps)

Pond 1AP: SPORTS COMPLEX INFILTRATION BASIN - Chamber Wizard Field A
Chamber Model = ADS_StormTechSC-310 +Cap (ADS StormTech®SC-310 with cap length)
Effective Size $=28.9$ "W $\times 16.0^{\prime \prime} \mathrm{H}=>2.07 \mathrm{sf} \times 7.12$ 'L $=14.7 \mathrm{cf}$
Overall Size $=34.0 \mathrm{~W} \mathrm{~W} \times 16.0^{\prime \prime} \mathrm{H} \times 7.56^{\prime} \mathrm{L}$ with 0.44 ' Overlap
34.0" Wide +6.0 " Spacing $=40.0$ " C-C Row Spacing

12 Chambers/Row x 7.12' Long +0.60' Cap Length $x 2=86.64$ ' Row Length $+12.0^{\prime \prime}$ End Stone $\times 2=88.64^{\prime}$ Base Length
7 Rows x 34.0" Wide + 6.0" Spacing x $6+12.0$ " Side Stone x 2 = 24.83' Base Width
6.0" Stone Base + 16.0" Chamber Height $+6.0^{\prime \prime}$ Stone Cover $=2.33$ ' Field Height

84 Chambers $\times 14.7$ cf $=1,238.3$ cf Chamber Storage
5,136.2 cf Field $-1,238.3$ cf Chambers $=3,897.9$ cf Stone $\times 40.0 \%$ Voids $=1,559.1$ cf Stone Storage
Chamber Storage + Stone Storage $=2,797.5 \mathrm{cf}=0.064$ af
Overall Storage Efficiency = 54.5\%
Overall System Size $=88.64^{\prime} \times 24.83$ ' $\times 2.33^{\prime}$
84 Chambers
190.2 cy Field
144.4 cy Stone

Summary for Pond 1BP: SPORTS COMPLEX INFILTRATION BASIN

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 171.52' @ 12.08 hrs Surf.Area= 2,378 sf Storage= 3,056 cf
Plug-Flow detention time $=89.9 \mathrm{~min}$ calculated for 0.386 af (100% of inflow)
Center-of-Mass det. time= $89.9 \min (869.9-780.0)$

Volume	Invert	Avail.Storage	Storage Description
\#1A	169.00'	1,683 cf	24.83'W x 95.76'L x 2.33'H Field A
			5,549 cf Overall - 1,342 cf Embedded $=4,207$ cf $\times 40.0 \%$ Voids
\#2A	169.50'	1,342 cf	ADS_StormTech SC-310 +Capx 91 Inside \#1
			Effective Size $=28.9$ "W x 16.0"H => $2.07 \mathrm{sf} \times 7.12 \mathrm{~L}=14.7$
			Overall Size $=34.0$ "W x 16.0"H $\times 7.56$ 'L with 0.44 ' Overlap
			91 Chambers in 7 Rows
\#3	169.00'	72 cf	4.00'D x 5.70'H CB-Impervious
\#4	172.70'	572 cf	Ponding at CB (Prismatic)Listed below (Recalc)

> 3,668 cf Total Available Storage

Storage Group A created with Chamber Wizard

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
172.70	10	0	0
173.00	300	47	47
174.50	400	525	572

Device	Routing	Invert	Outlet Devices
\#1	Primary	170.50'	12.0" Round Culvert X 2.00
			$\mathrm{L}=23.0$ ' RCP, end-section conforming to fill, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 170.50' / 170.20' S=0.0130 '/' Cc= 0.900
\#2	Discarded	169.00'	$2.410 \mathrm{in} / \mathrm{hr}$ Exfiltration over Surface area Phase-In= $0.01{ }^{\prime}$

Discarded OutFlow Max=0.13 cfs @ $9.62 \mathrm{hrs} \mathrm{HW}=169.06$ ' (Free Discharge)
(Exfiltration Controls 0.13 cfs)
L2=Exfiltration (Exfiltration Controls 0.13 cfs)
Primary OutFlow Max=5.22 cfs @ 12.08 hrs HW=171.50' TW=152.04' (Dynamic Tailwater)
L-1=Culvert (Barrel Controls 5.22 cfs @ 4.14 fps)

Pond 1BP: SPORTS COMPLEX INFILTRATION BASIN - Chamber Wizard Field A
Chamber Model = ADS_StormTechSC-310 +Cap (ADS StormTech®SC-310 with cap length)
Effective Size $=28.9$ "W $\times 16.0^{\prime \prime} \mathrm{H}=>2.07 \mathrm{sf} \times 7.12$ 'L $=14.7 \mathrm{cf}$
Overall Size $=34.0^{\prime \prime} \mathrm{W} \times 16.0^{\prime \prime} \mathrm{H} \times 7.56^{\prime} \mathrm{L}$ with 0.44 ' Overlap
34.0" Wide +6.0 " Spacing $=40.0$ " C-C Row Spacing

13 Chambers/Row x 7.12' Long +0.60' Cap Length $x 2=93.76$ ' Row Length $+12.0^{\prime \prime}$ End Stone $\times 2=95.76^{\prime}$ Base Length
7 Rows x 34.0" Wide + 6.0" Spacing x $6+12.0$ " Side Stone x 2 = 24.83' Base Width
6.0" Stone Base + 16.0" Chamber Height + 6.0" Stone Cover = 2.33' Field Height

91 Chambers $\times 14.7$ cf $=1,341.5$ cf Chamber Storage
$5,548.8$ cf Field $-1,341.5$ cf Chambers $=4,207.2$ cf Stone $\times 40.0 \%$ Voids $=1,682.9$ cf Stone Storage
Chamber Storage + Stone Storage $=3,024.4 \mathrm{cf}=0.069 \mathrm{af}$
Overall Storage Efficiency $=54.5 \%$
Overall System Size $=95.76$ x 24.83 ' $\times 2.33$ '
91 Chambers
205.5 cy Field
155.8 cy Stone

Summary for Pond 1CP: MEMORIAL GROVE AVE. BASIN

Assumed slope of 0.005 for outlet culvert.

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 155.35' @ 13.27 hrs Surf.Area= 77,627 sf Storage $=330,546$ cf
Plug-Flow detention time $=150.6 \mathrm{~min}$ calculated for 18.653 af (100% of inflow)
Center-of-Mass det. time= 148.1 min (974.6-826.5)

Primary OutFlow Max=38.48 cfs @ 13.27 hrs HW=155.35' TW=146.23' (Dynamic Tailwater)
—1=Culvert (Barrel Controls 38.48 cfs @ 9.68 fps)
Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=150.00' TW=142.50' (Dynamic Tailwater)
L-2=Broad-Crested Rectangular Weir(Controls 0.00 cfs)

Summary for Pond 1DP: UPSTREAM DOGLEG

Inflow Area =	77.180 a	6\% Impervious,	俍 3.81	" for 25-year event
Inflow	66.03 cfs @	13.07 hrs, Volume=	24.535 af	
Outflow	65.63 cfs @	13.13 hrs , Volume=	24.535 af,	Atten $=1 \%$, Lag $=3.7 \mathrm{~min}$
Primary	32.41 cfs @	13.13 hrs , Volume=	11.779 af	
Routed to	d 2IP : PROP	OOSED PHASE 1 BASIN		
Secondary =	33.22 cfs @	13.13 hrs , Volume=	12.755 af	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 146.28' @ 15.58 hrs Surf.Area= 7,011 sf Storage= 6,577 cf
Plug-Flow detention time $=1.6 \mathrm{~min}$ calculated for 24.535 af (100% of inflow)
Center-of-Mass det. time $=1.6 \mathrm{~min}$ (961.2 - 959.6)

Summary for Pond 1FP: EXISTING PARKWAY BASIN

Primary Culvert - Assumed Inverts, pipe diameter, and pipe material.

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 147.72' @ 12.73 hrs Surf.Area= 26,178 sf Storage= $94,419 \mathrm{cf}$
Plug-Flow detention time= 327.4 min calculated for 2.240 af (60% of inflow)
Center-of-Mass det. time $=224.4 \mathrm{~min}(1,023.8-799.4)$

Device Routing Invert Outlet Devices
\#1 Primary 146.50' 24.0" Round Culvert
L=98.0' RCP, end-section conforming to fill, $\mathrm{Ke}=0.500$
Inlet / Outlet Invert= 146.50' / 146.00' S=0.0051 '/' Cc= 0.900
$\mathrm{n}=0.013$ Concrete pipe, bends \& connections, Flow Area= 3.14 sf
\#2 Secondary 150.00 ' 10.0' long x 20.0' breadth Broad-Crested Rectangular Weir
Head (feet) $0.20 \quad 0.400 .60 \quad 0.801 .001 .201 .401 .60$
Coef. (English) 2.682 .702 .702 .642 .632 .642 .642 .63

Primary OutFlow Max=6.04 cfs @ 12.73 hrs HW=147.72' TW=143.95' (Dynamic Tailwater)
-1=Culvert (Barrel Controls 6.04 cfs @ 4.29 fps)
Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=143.00' TW=133.50' (Dynamic Tailwater)
$\complement_{2=B r o a d-C r e s t e d ~ R e c t a n g u l a r ~ W e i r(~ C o n t r o l s ~} 0.00$ cfs)

Summary for Pond 1GP: SPORTS COMPLEX BASIN

 Routed to Pond 1LP : CENTRAL GREENWAY

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 169.58' @ 12.55 hrs Surf.Area= 4,379 sf Storage= 8,644 cf

Plug-Flow detention time $=23.7$ min calculated for 1.387 af (99% of inflow)
Center-of-Mass det. time $=20.2 \mathrm{~min}$ (817.9-797.7)

Primary OutFlow Max=5.58 cfs @ 12.55 hrs HW=169.57' TW=151.37' (Dynamic Tailwater)
—1=Culvert (Barrel Controls 5.58 cfs @ 7.10 fps)
Secondary OutFlow Max=3.49 cfs @ 12.55 hrs HW=169.57' TW=151.37' (Dynamic Tailwater)
L2=Broad-Crested Rectangular Weir(Weir Controls 3.49 cfs @ 1.41 fps)

Summary for Pond 1HP: SPORTS COMPLEX BASIN

Inflow Area =	1.320 ac, 75.76% Impervious, Inflow Depth = 5.49" for 25-year event		
Inflow	7.80 cfs @ 12.08 hrs , Volume=	0.604 af	
Outflow	5.12 cfs @ 12.17 hrs, Volume=	0.602 af, Atten $=34 \%$, Lag $=5.3 \mathrm{~min}$	
Primary	4.74 cfs @ 12.17 hrs , Volume=	0.600 af	
Routed to	1LP : CENTRAL GREENWAY		
Secondary =	0.39 cfs @ 12.17 hrs , Volume=	0.002 af	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 164.58' @ 12.17 hrs Surf.Area= 2,625 sf Storage= 2,285 cf
Plug-Flow detention time $=8.9 \mathrm{~min}$ calculated for 0.602 af (100% of inflow)
Center-of-Mass det. time $=6.6 \mathrm{~min}(774.3-767.7)$

Primary OutFlow Max=4.74 cfs @ 12.17 hrs HW=164.57' TW=150.45' (Dynamic Tailwater)
-1=Culvert (Barrel Controls 4.74 cfs @ 6.03 fps)
Secondary OutFlow Max=0.38 cfs @ 12.17 hrs HW=164.57' TW=150.45' (Dynamic Tailwater)
—2=Broad-Crested Rectangular Weir (Weir Controls 0.38 cfs @ 0.73 fps)

Summary for Pond 1IP: TACAN

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 145.36' @ 16.48 hrs Surf.Area= 1,206,490 sf Storage= 2,519,595 cf
Plug-Flow detention time= 385.3 min calculated for 123.597 af (100% of inflow)
Center-of-Mass det. time $=385.2 \mathrm{~min}(1,292.2-907.0)$

Summary for Pond 1LP: CENTRAL GREENWAY

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 151.37' @ 12.53 hrs Surf.Area= 92,532 sf Storage= 295,581 cf
Plug-Flow detention time $=45.9 \mathrm{~min}$ calculated for 27.315 af (100% of inflow)
Center-of-Mass det. time= 46.1 min (839.5-793.4)

Primary OutFlow Max=108.20 cfs @ 12.21 hrs HW=150.69' TW=149.33' (Dynamic Tailwater)
L-1=Culvert (Inlet Controls 108.20 cfs @ 5.62 fps)
Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=146.00' TW=145.00' (Dynamic Tailwater)
L2=Broad-Crested Rectangular Weir(Controls 0.00 cfs$)$

Summary for Pond 1MP: CENTRAL GREENWAY

Inflow Area =	78.180 ac ,	9.40\% Impervious,	,	for 25-year event
Inflow	154.94 cfs @	12.15 hrs , Volume=	31.174 af	
Outflow	89.03 cfs @	12.72 hrs , Volume=	31.170 af, At	Atten $=43 \%$, Lag $=34.1 \mathrm{~min}$
Primary =	$\begin{gathered} 89.03 \mathrm{cfs} @ \\ \text { ond } 1 \mathrm{P} \text { : TACA } \end{gathered}$	12.72 hrs , Volume= N	31.170 af	
Secondary = Routed to	$\begin{aligned} & 0.00 \mathrm{cfs} @ \\ & \text { Id } 1 \mathrm{P} \text { : TACAI } \end{aligned}$	0.00 hrs , Volume=	0.000 af	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev=150.44' @ 12.72 hrs Surf.Area= 55,939 sf Storage= 175,096 cf
Plug-Flow detention time $=28.5$ min calculated for 31.166 af (100% of inflow)
Center-of-Mass det. time $=28.4 \mathrm{~min}(863.3-835.0)$

Primary OutFlow Max=89.03 cfs @ 12.72 hrs HW=150.44' TW=143.94' (Dynamic Tailwater)
L1=Culvert (Inlet Controls 89.03 cfs @ 9.25 fps)
Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=145.00' TW=133.50' (Dynamic Tailwater)
L2=Broad-Crested Rectangular Weir(Controls 0.00 cfs$)$

Summary for Pond 1NP: WEST GREENWAY

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 150.82' @ 13.68 hrs Surf.Area= 93,007 sf Storage $=230,483 \mathrm{cf}$
Plug-Flow detention time $=289.3$ min calculated for 9.626 af (100% of inflow)
Center-of-Mass det. time $=287.3 \mathrm{~min}(1,087.5-800.2)$

Primary OutFlow Max=9.86 cfs @ 16.99 hrs HW=150.26' TW=149.79' (Dynamic Tailwater)
L-1=Culvert (Outlet Controls 9.86 cfs @ 3.14 fps)
Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=147.00' TW=146.00' (Dynamic Tailwater)
_2=Broad-Crested Rectangular Weir(Controls 0.00 cfs)

Summary for Pond 10P: WEST GREENWAY

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 150.43' @ 13.47 hrs Surf.Area= 23,900 sf Storage= 54,316 cf
Plug-Flow detention time $=49.4$ min calculated for 12.610 af (100% of inflow)
Center-of-Mass det. time $=48.3 \mathrm{~min}(1,066.2-1,017.9)$

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	146.00	110,744 cf	Custom Stage Data (Prismatic)Listed below (Recalc)

Elevation (feet)	Surf.Area $($ sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
146.00	3,480	0	0
147.00	6,760	5,120	5,120
148.00	10,685	8,723	13,843
149.00	15,260	12,973	26,815
150.00	20,485	17,873	44,688
151.00	28,355	24,420	69,108
152.00	29,175	28,765	97,873
152.42	32,120	12,872	110,744

Device	Routing	Invert	Outlet Devices
\#1	Primary	146.00'	24.0" Round Culvert
			$\mathrm{L}=140.0^{\prime} \mathrm{RCP}$, end-section conforming to fill, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 146.00' / 145.50' S=0.0036 '/' Cc= 0.900
			$\mathrm{n}=0.013$ Concrete pipe, bends \& connections, Flow Area= 3.14 sf
\#2	Secondary	152.00'	115.0' long x 50.0^{\prime} breadth Broad-Crested Rectangular Weir
			Head (feet) 0.200 .400 .600 .801 .001 .201 .401 .60
			Coef. (English) 2.682 .702 .702 .642 .632 .642 .642 .63

Primary OutFlow Max=12.03 cfs @ 12.10 hrs HW=149.29' TW=148.56' (Dynamic Tailwater)
L1=Culvert (Outlet Controls 12.03 cfs @ 3.83 fps)
Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=146.00' TW=145.00' (Dynamic Tailwater)
L2=Broad-Crested Rectangular Weir(Controls 0.00 cfs)

Summary for Pond 1PP: WEST GREENWAY

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 149.75' @ 13.22 hrs Surf.Area= 69,546 sf Storage= 191,710 cf
Plug-Flow detention time $=124.9$ min calculated for 20.062 af (100% of inflow)
Center-of-Mass det. time $=120.6 \mathrm{~min}(1,085.2-964.6)$

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	145.00	319,950 cf	Custom Stage Data (Prismatic)Listed below (Recalc)

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
145.00	13,590	0	0
146.00	24,145	18,868	18,868
147.00	35,350	29,748	48,615
148.00	47,205	41,278	89,893
149.00	59,705	53,455	143,348
150.00	72,855	66,280	209,628
151.00	78,910	75,883	285,510
151.42	85,090	34,440	319,950

Device	Routing	Invert	Outlet Devices
\#1	Primary	145.00'	24.0" Round Culvert
			$\mathrm{L}=188.0$ ' RCP, end-section conforming to fill, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 145.00' 144.50 ' S=0.0027 '/' Cc= 0.900
			$\mathrm{n}=0.013$ Concrete pipe, bends \& connections, Flow Area=3.14 sf
\#2	Secondary	151.00'	115.0' long x 50.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.200 .400 .600 .801 .001 .201 .401 .60
			Coef. (English) 2.682 .702 .702 .642 .632 .642 .642 .63

Primary OutFlow Max=20.64 cfs @ 14.54 hrs HW=149.59' TW=147.02' (Dynamic Tailwater)
—1 $_{1=\text { Culvert }}$ (Outlet Controls 20.64 cfs @ 6.57 fps)
Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=145.00' TW=144.00' (Dynamic Tailwater)
—2=Broad-Crested Rectangular Weir(Controls 0.00 cfs)

Summary for Pond 1QP: WEST GREENWAY

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 147.88' @ 12.47 hrs Surf.Area= 58,240 sf Storage $=136,437$ cf
Plug-Flow detention time $=78.2$ min calculated for 26.266 af (98% of inflow)
Center-of-Mass det. time $=57.0 \mathrm{~min}(1,069.6-1,012.7)$

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	144.00	319,950 cf	Custom Stage Data (Prismatic)Listed below (Recalc)

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
144.00	13,590	0	0
145.00	24,145	18,868	18,868
146.00	35,350	29,748	48,615
147.00	47,205	41,278	89,893
148.00	59,705	53,455	143,348
149.00	72,855	66,280	209,628
150.00	78,910	75,883	285,510
150.42	85,090	34,440	319,950

Device	Routing	Invert	Outlet Devices
\#1	Primary	144.00'	36.0" Round Culvert
			$\mathrm{L}=504.0$ ' RCP, end-section conforming to fill, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 144.00' / 138.00' S=0.0119 '/' Cc= 0.900
\#2	Device 1	145.00'	36.0" W x 24.0" H Vert. Orifice/Grate C= 0.600
			Limited to weir flow at low heads
\#3	Device 1	148.00'	24.0" x 24.0" Horiz. Orifice/Grate C= 0.600
			Limited to weir flow at low heads
\#4	Secondary	149.00'	115.0' long x 50.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.200 .400 .600 .801 .001 .201 .401 .60
			Coef. (English) 2.682 .702 .702 .642 .632 .642 .642 .63

Primary OutFlow Max=39.15 cfs @ 12.47 hrs HW=147.88' TW=143.64' (Dynamic Tailwater)
-1=Culvert (Passes 39.15 cfs of 52.54 cfs potential flow)
-2=Orifice/Grate (Orifice Controls 39.15 cfs @ 6.52 fps)
—3=Orifice/Grate (Controls 0.00 cfs)
Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=144.00' TW=133.50' (Dynamic Tailwater)
4=Broad-Crested Rectangular Weir(Controls 0.00 cfs)

Summary for Pond 2AP: FRENCH'S STREAM WEST BRANCH

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 147.31' @ 14.07 hrs Surf.Area= 261,717 sf Storage= 369,480 cf
Plug-Flow detention time $=16.9 \mathrm{~min}$ calculated for 77.269 af (100% of inflow)
Center-of-Mass det. time= 16.9 min (920.1-903.3)

| Volume | Invert | Avail.Storage | Storage Description |
| ---: | ---: | ---: | ---: | ---: |
| $\# \# 1$ | 141.70 | $1,815,201 \mathrm{cf}$ | Custom Stage Data (Pr |
| Elevation
 (feet) | Surf.Area
 (sq-ft) | Inc.Store
 (cubic-feet) | Cum.Store
 (cubic-feet) |
| 141.70 | 0 | 0 | 0 |
| 144.00 | 6,640 | 7,636 | 7,636 |
| 145.00 | 57,230 | 31,935 | 39,571 |
| 146.00 | 117,540 | 87,385 | 126,956 |
| 147.00 | 216,860 | 167,200 | 294,156 |
| 148.00 | 359,360 | 288,110 | 582,266 |
| 149.00 | 640,140 | 499,750 | $1,082,016$ |
| 150.00 | 826,230 | 733,185 | $1,815,201$ |

Device	Routing	Invert	Outlet Devices
\#1	Primary	141.70'	48.0" Round Culvert
			$\mathrm{L}=126.0$ ' RCP, end-section conforming to fill, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 141.70' / 141.60' S=0.0008'/l' Cc=0.900 $\mathrm{n}=0.013$, Flow Area= 12.57 sf
\#2	Secondary	141.70'	48.0" Round Culvert
			$\mathrm{L}=126.0^{\prime} \mathrm{RCP}$, end-section conforming to fill, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 141.70' / 141.50' S=0.0016 '/' Cc= 0.900
			$\mathrm{n}=0.013$, Flow Area= 12.57 sf

Primary OutFlow Max=90.33 cfs @ 13.96 hrs HW=147.31' TW=145.08' (Dynamic Tailwater)
—1=Culvert (Inlet Controls 90.33 cfs @ 7.19 fps)
Secondary OutFlow Max=92.20 cfs @ 13.85 hrs HW=147.28' TW=144.96' (Dynamic Tailwater)
—2=Culvert (Inlet Controls 92.20 cfs @ 7.34 fps)

Summary for Pond 2BP: EXISTING BASIN

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 149.97' @ 12.60 hrs Surf.Area= 87,865 sf Storage= 337,084 cf
Plug-Flow detention time= 144.7 min calculated for 18.405 af (98% of inflow)
Center-of-Mass det. time $=133.7 \mathrm{~min}$ (901.4-767.7)

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	143.00^{\prime}	482,855 cf	Custom Stage Data (Prismatic)Listed below (Recalc)

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
143.00	10,920	0	0
144.00	16,580	13,750	13,750
145.00	28,700	22,640	36,390
146.00	39,560	34,130	70,520
147.00	53,515	46,538	117,058
148.00	71,930	62,723	179,780
149.00	80,230	76,080	255,860
150.00	88,130	84,180	340,040
151.00	95,000	91,565	431,605
151.50	110,000	51,250	482,855

Device	Routing	Invert	Outlet Devices
\#1	Primary	144.00'	24.0" Round Culvert
			$\mathrm{L}=79.0{ }^{\prime}$ RCP, end-section conforming to fill, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 144.00' / 143.21' S= 0.0100 '/' Cc= 0.900 $\mathrm{n}=0.013$. Flow Area $=3.14 \mathrm{sf}$
\#2	Secondary	150.00'	10.0' long x 20.0 ' breadth Broad-Crested Rectangular Weir Head (feet) $0.20 \quad 0.400 .60 \quad 0.801 .001 .201 .401 .60$
			Coef. (English) 2.682 .702 .702 .642 .632 .642 .642 .63

Primary OutFlow Max=33.25 cfs @ 12.42 hrs HW=149.85' TW=145.02' (Dynamic Tailwater)
L-1=Culvert (Inlet Controls 33.25 cfs @ 10.58 fps)
Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=143.00' TW=141.70' (Dynamic Tailwater)
$\left\llcorner_{2=B r o a d-C r e s t e d ~ R e c t a n g u l a r ~ W e i r(~ C o n t r o l s ~} 0.00\right.$ cfs)

Summary for Pond 2CP: EXISTING PARKWAY BASIN

Existing basin information taken from Weymouth Patriot Parkway Utility As-Builts, prepared by LM Heavy Civil Construction LLC, dated October 15, 2018.

Routing by Dyn-Stor-Ind method, Time Span= $0.00-72.00 \mathrm{hrs}$, $\mathrm{dt}=0.01 \mathrm{hrs}$
Peak Elev= 147.37' @ 12.40 hrs Surf.Area= 32,437 sf Storage= 143,191 cf
Plug-Flow detention time= 235.2 min calculated for 3.726 af (61% of inflow)
Center-of-Mass det. time= 129.5 min (887.0-757.5)

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	138.00^{\prime}	$240,905 \mathrm{cf}$	Custom Stage Data (Prismatic)Listed below (Recalc)

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
138.00	730	0	0
139.00	1,695	1,213	1,213
140.00	3,150	2,423	3,635
141.00	6,840	4,995	8,630
142.00	12,885	9,863	18,493
143.00	17,405	15,145	33,638
144.00	21,190	19,298	52,935
145.00	24,465	22,828	75,763
146.00	27,780	26,123	101,885
147.00	31,160	29,470	131,355
148.00	34,590	32,875	164,230
149.00	38,295	36,443	200,673
150.00	42,170	40,233	240,905

Device	Routing	Invert	Outlet Devices
\#1	Primary	142.30'	30.0" Round Culvert
			$\mathrm{L}=65.0{ }^{\prime}$ RCP, end-section conforming to fill, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 142.30' / 141.50' S=0.0123 '/' Cc= 0.900 $n=0.013$, Flow Area $=4.91 \mathrm{sf}$
\#2	Device 1	146.00'	24.0" \times 24.0" Horiz. Orifice/Grate $\mathrm{C}=0.600$
			Limited to weir flow at low heads

Primary OutFlow Max=22.56 cfs @ 12.40 hrs HW=147.37' TW=141.87' (Dynamic Tailwater)
-1=Culvert (Passes 22.56 cfs of 46.21 cfs potential flow)

Summary for Pond 2DP: EXISTING PARKWAY BASIN

Existing basin information taken from Weymouth Patriot Parkway Utility As-Builts, prepared by LM Heavy Civil Construction LLC, dated October 15, 2018.

Inflow Area =	2.770 ac, 75.81% Impervious, Inflow Depth $=4.64$ " for 25 -year event			
Inflow	12.80 cfs @	12.08 hrs, Volume=	1.071 af	
Outflow	0.49 cfs @	15.34 hrs , Volume=	0.203 af , A	Atten $=96 \%$, Lag $=195.3 \mathrm{~min}$
Primary	0.49 cfs @	15.34 hrs , Volume=	0.203 af	

Routed to Pond 2EP : FRENCH'S STREAM WEST BRANCH
Secondary = $\quad 0.00 \mathrm{cfs}$ @ 0.00 hrs, Volume= $\quad 0.000$ af Routed to Pond 2EP : FRENCH'S STREAM WEST BRANCH

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 146.27' @ 15.34 hrs Surf.Area= 10,662 sf Storage= 38,583 cf
Plug-Flow detention time $=643.0 \mathrm{~min}$ calculated for 0.203 af (19% of inflow)
Center-of-Mass det. time $=361.7 \mathrm{~min}(1,111.9-750.1)$

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	139.00	$89,683 \mathrm{cf}$	Custom Stage Data (Prismatic)Listed below (Recalc)

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
139.00	105	0	0
140.00	1,200	653	653
141.00	2,565	1,883	2,535
142.00	4,380	3,473	6,008
143.00	6,200	5,290	11,298
144.00	7,440	6,820	18,118
145.00	8,800	8,120	26,238
146.00	10,240	9,520	35,758
147.00	11,800	11,020	46,778
148.00	13,425	12,613	59,390
149.00	15,130	14,278	73,668
150.00	16,900	16,015	89,683

Device	Routing	Invert	Outlet Devices
\#1	Primary	142.30'	24.0" Round Culvert
			$\mathrm{L}=51.0{ }^{\prime} \mathrm{RCP}$, end-section conforming to fill, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 142.30' $/ 141.70$ ' $\mathrm{S}=0.0118$ '// Cc= 0.900 $n=0.013$, Flow Area $=3.14 \mathrm{sf}$
\#2	Device 1	146.20'	24.0" \times 24.0" Horiz. Orifice/Grate $\mathrm{C}=0.600$
			Limited to weir flow at low heads
\#3	Secondary	149.50'	10.0' long x 20.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.200 .400 .600 .801 .001 .201 .401 .60
			Coef. (English) 2.682 .702 .702 .642 .632 .642 .642 .63

Primary OutFlow Max=0.49 cfs @ 15.34 hrs HW=146.27' TW=145.17' (Dynamic Tailwater)
$1=$ Culvert (Passes 0.49 cfs of 15.87 cfs potential flow)
L2=Orifice/Grate (Weir Controls 0.49 cfs @ 0.87 fps)
Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=139.00' TW=138.00' (Dynamic Tailwater)
$\complement_{3=B r o a d-C r e s t e d ~ R e c t a n g u l a r ~ W e i r(~ C o n t r o l s ~} 0.00$ cfs)

Summary for Pond 2EP: FRENCH'S STREAM WEST BRANCH

Per site visit outlet consists of one 60-inch culvert.

Elevation (feet)	Surf.Area $(\mathrm{sq}-\mathrm{ft})$	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
138.00	0	0	0
140.00	9,600	9,600	9,600
141.00	13,135	11,368	20,968
142.00	35,665	24,400	45,368
143.00	47,280	41,473	86,840
144.00	58,400	52,840	139,680
145.00	71,585	64,993	204,673
146.00	85,230	78,408	283,080
147.00	106,515	95,873	378,953
148.00	183,900	145,208	524,160

Device Routing Invert Outlet Devices
\#1 Primary 138.00' 60.0" Round Culvert
$\mathrm{L}=380.0^{\prime} \mathrm{RCP}$, end-section conforming to fill, $\mathrm{Ke}=0.500$
Inlet / Outlet Invert= 138.00' / 135.70' S=0.0061 '/' Cc= 0.900 $\mathrm{n}=0.013$ Concrete pipe, bends \& connections, Flow Area= 19.63 sf

Primary OutFlow Max=199.15 cfs @ 14.71 hrs HW=145.33' TW=131.93' (Dynamic Tailwater)
L-1=Culvert (Barrel Controls 199.15 cfs @ 10.14 fps)

Summary for Pond 2FP: FRENCH'S STREAM WEST BRANCH

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 132.11' @ 13.50 hrs Surf.Area= 58,288 sf Storage= 101,424 cf
Plug-Flow detention time= 5.1 min calculated for 269.522 af (100% of inflow)
Center-of-Mass det. time $=4.7 \mathrm{~min}(1,136.7-1,132.0)$

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	125.90^{\prime}	665,278 cf	Custom Stage Data (Prismatic)Listed below (Recalc)

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
125.90	0	0	0
130.00	17,650	36,182	36,182
131.00	22,340	19,995	56,177
132.00	56,105	39,223	95,400
133.00	76,835	66,470	161,870
134.00	93,610	85,223	247,092
135.00	111,175	102,393	349,485
136.00	153,700	132,438	481,922
137.00	213,010	183,355	665,278

Device	Routing	Invert	Outlet Devices
\#1	Primary	127.60'	60.0" Round Culvert
			$\mathrm{L}=34.0$ ' RCP, end-section conforming to fill, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 126.60' / 127.60' S=-0.0294 '/' Cc= 0.900 $\mathrm{n}=0.013$, Flow Area= 19.63 sf
\#2	Secondary	126.70'	72.0" Round Culvert
			$\mathrm{L}=34.0{ }^{\prime}$ RCP, end-section conforming to fill, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 125.90' / 126.70' S=-0.0235 '/' Cc= 0.900 $\mathrm{n}=0.013$, Flow Area $=28.27 \mathrm{sf}$
\#3	Tertiary	135.50'	10.0' long x 20.0' breadth Spillway over Path
			Head (feet) 0.200 .400 .600 .801 .001 .201 .401 .60
			Coef. (English) 2.682 .702 .702 .642 .632 .642 .642 .63

Primary OutFlow Max=129.23 cfs @ 13.50 hrs HW=132.11' TW=0.00' (Dynamic Tailwater) -1=Culvert (Barrel Controls 129.23 cfs @ 7.45 fps)

Secondary OutFlow Max=187.38 cfs @ 13.50 hrs HW=132.11' TW=0.00' (Dynamic Tailwater)
—2=Culvert (Barrel Controls 187.38 cfs @ 7.96 fps)
Tertiary OutFlow Max=0.00 cfs @ 0.00 hrs HW=125.90' TW=0.00' (Dynamic Tailwater)
$£_{3=\text { Spillway over Path (Controls } 0.00 \mathrm{cfs} \text {) }}$

Summary for Pond 2IP: PROPOSED PHASE 1 BASIN

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 145.99' @ 15.85 hrs Surf.Area= 162,334 sf Storage= $972,688 \mathrm{cf}$
Plug-Flow detention time $=409.1$ min calculated for 31.204 af (84% of inflow)
Center-of-Mass det. time $=327.6 \mathrm{~min}(1,236.4-908.8)$

| Volume | Invert | Avail.Storage | Storage Description |
| ---: | ---: | ---: | ---: | ---: |
| $\# 1$ | 139.00 | $1,312,748$ cf | Custom Stage Data (Pr |
| Elevation
 (feet) | Surf.Area
 (sq-ft) | Inc.Store
 (cubic-feet) | Cum.Store
 (cubic-feet) |
| 139.00 | 116,400 | 0 | 0 |
| 140.00 | 122,800 | 119,600 | 119,600 |
| 141.00 | 129,270 | 126,035 | 245,635 |
| 142.00 | 135,790 | 132,530 | 378,165 |
| 143.00 | 142,360 | 139,075 | 517,240 |
| 144.00 | 148,990 | 145,675 | 662,915 |
| 145.00 | 155,680 | 152,335 | 815,250 |
| 146.00 | 162,400 | 159,040 | 974,290 |
| 147.00 | 169,220 | 165,810 | $1,140,100$ |
| 148.00 | 176,075 | 172,648 | $1,312,748$ |

Device	Routing	Invert	Outlet Devices
\#1	Primary	139.00'	36.0" Round Culver
			$\mathrm{L}=100.0^{\prime} \mathrm{RCP}$, end-section conforming to fill, $\mathrm{Ke}=0.500$ Inlet / Outlet Invert= 139.00' / 137.00' S=0.0200'/l' Cc=0.900 $\mathrm{n}=0.013$, Flow Area $=7.07 \mathrm{sf}$
\#2	Device 1	141.00'	36.0" W x 10.0" H Vert. Orifice/Grate C= 0.600
			Limited to weir flow at low heads
\#3	Device 1	142.50'	36.0" W x 12.0" H Vert. Orifice/Grate C= 0.600
			Limited to weir flow at low heads
\#4	Device 1	144.00'	36.0 " 36.0 " Horiz. Orifice/Grate $\mathrm{C}=0.600$
			Limited to weir flow at low heads
\#5	Secondary	146.00'	20.0' long x 20.0' breadth Broad-Crested Rectangular Weir
			Head (feet) $0.20 \quad 0.40 \quad 0.60 \quad 0.801 .001 .201 .401 .60$
			Coef. (English) 2.682 .702 .702 .642 .632 .642 .642 .63

Primary OutFlow Max=57.64 cfs @ 17.56 hrs HW=145.22' TW=142.35' (Dynamic Tailwater)

- =Culvert (Inlet Controls 57.64 cfs @ 8.15 fps)
-2=Orifice/Grate (Passes < 20.39 cfs potential flow)
-3=Orifice/Grate (Passes < 21.49 cfs potential flow)
-4=Orifice/Grate (Passes < 47.92 cfs potential flow)
Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=139.00' TW=138.00' (Dynamic Tailwater)
$\complement_{5=B r o a d-C r e s t e d ~ R e c t a n g u l a r ~ W e i r(~ C o n t r o l s ~} 0.00$ cfs)

Summary for Pond 2JP: PROPOSED BASIN

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 164.24' @ 12.46 hrs Surf.Area= 36,146 sf Storage $=106,135 \mathrm{cf}$
Plug-Flow detention time $=120.7$ min calculated for 5.822 af (94% of inflow)
Center-of-Mass det. time $=90.2 \mathrm{~min}(883.7-793.5)$

Primary OutFlow Max=21.56 cfs @ 12.46 hrs HW=164.24' TW=145.09' (Dynamic Tailwater)
L-1=Culvert (Passes 21.56 cfs of 22.62 cfs potential flow)
-2=Orifice/Grate (Orifice Controls 21.56 cfs @ 7.19 fps)
-3=Orifice/Grate (Controls 0.00 cfs)
Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=161.00' TW=141.70' (Dynamic Tailwater)
4=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Pond 2KP: PROPOSED BASIN

Inflow Area =	21.000 ac ,	0.00\% Impervious,	flow Depth $=4.38$ " for 25 -year event
Inflow	106.14 cfs @	12.09 hrs , Volume=	7.672 af
Outflow	17.84 cfs @	12.56 hrs, Volume=	
Primary	17.84 cfs @	12.56 hrs, Volume=	6.668 af

Routed to Pond 2FP : FRENCH'S STREAM WEST BRANCH
Secondary = $\quad 0.00$ cfs @ 0.00 hrs, Volume= 0.000 af
Routed to Pond 2FP : FRENCH'S STREAM WEST BRANCH
Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev=151.60' @ 12.56 hrs Surf.Area= 53,855 sf Storage $=171,236$ cf
Plug-Flow detention time $=225.1$ min calculated for 6.667 af (87% of inflow)
Center-of-Mass det. time $=166.9 \mathrm{~min}$ (969.2-802.3)

Primary OutFlow Max=17.84 cfs @ 12.56 hrs HW=151.60' TW=131.16' (Dynamic Tailwater)
-1=Culvert (Passes 17.84 cfs of 49.30 cfs potential flow)
-2=Orifice/Grate (Orifice Controls 11.06 cfs @ 7.37 fps)
-3=Orifice/Grate (Orifice Controls 6.78 cfs @ 3.39 fps)
-4=Orifice/Grate (Controls 0.00 cfs)
Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=148.00' TW=125.90' (Dynamic Tailwater)
${ }^{4}$ 5 Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Pond 2LP: PROPOSED BASIN

Inflow Area $=$	10.690 ac,	0.00% Impervious, Inflow Depth $=4.82 "$	for $25-$-year event	
Inflow	$=$	$58.22 \mathrm{cfs} @$	12.09 hrs, Volume $=$	4.293 af
Outflow	$=$	$19.90 \mathrm{cfs} @$	12.36 hrs, Volume $=$	4.066 af, Atten $=66 \%$, Lag $=16.8 \mathrm{~min}$
Primary	$=$	$19.90 \mathrm{cfs} @$	12.36 hrs , Volume $=$	4.066 af

Routed to Pond 2FP : FRENCH'S STREAM WEST BRANCH
Secondary = $\quad 0.00$ cfs @ 0.00 hrs, Volume= 0.000 af
Routed to Pond 2FP : FRENCH'S STREAM WEST BRANCH
Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 157.82' @ 12.36 hrs Surf.Area= 24,919 sf Storage= $62,144 \mathrm{cf}$
Plug-Flow detention time= 97.2 min calculated for 4.066 af (95% of inflow)
Center-of-Mass det. time $=67.8 \mathrm{~min}(858.1$ - 790.4)

Primary OutFlow Max=19.90 cfs @ 12.36 hrs HW=157.82' TW=130.72' (Dynamic Tailwater)
—1=Culvert (Barrel Controls 19.90 cfs @ 6.33 fps)
-2=Orifice/Grate (Passes < 19.44 cfs potential flow)
-3=Orifice/Grate (Passes < 6.59 cfs potential flow)
-4=Orifice/Grate (Controls 0.00 cfs)
Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=155.00' TW=125.90' (Dynamic Tailwater)
${ }^{4}$ 5=Broad-Crested Rectangular Weir(Controls 0.00 cfs)

Summary for Pond 2MP: PROPOSED BASIN

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 181.13' @ 12.17 hrs Surf.Area= 20,526 sf Storage= 71,059 cf
Plug-Flow detention time $=53.1$ min calculated for 7.600 af (98% of inflow)
Center-of-Mass det. time= 40.0 min (830.4-790.4)

Primary OutFlow Max=71.51 cfs @ 12.17 hrs HW=181.13' TW=152.50' (Dynamic Tailwater)
—1=Culvert (Inlet Controls 71.51 cfs @ 7.43 fps)
-2=Orifice/Grate (Passes < 13.28 cfs potential flow)
-3=Orifice/Grate (Passes < 21.05 cfs potential flow)
-4=Orifice/Grate (Passes < 46.12 cfs potential flow)
Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=177.00' TW=150.00' (Dynamic Tailwater) 5=Broad-Crested Rectangular Weir(Controls 0.00 cfs)

Summary for Pond 3AP: FRENCH'S STREAM EAST BRANCH

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 147.40' @ 13.31 hrs Surf.Area= 77,102 sf Storage= 58,131 cf
Plug-Flow detention time $=6.4 \mathrm{~min}$ calculated for 19.342 af (100% of inflow)
Center-of-Mass det. time $=6.2 \mathrm{~min}(887.8-881.6)$

Summary for Pond 3BP: FRENCH'S STREAM EAST BRANCH

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 135.81' @ 13.58 hrs Surf.Area= 66,525 sf Storage= 204,979 cf
Plug-Flow detention time $=12.7 \mathrm{~min}$ calculated for 58.393 af (100% of inflow)
Center-of-Mass det. time= 12.7 min (919.5-906.8)

Summary for Subcatchment 1A:

Runoff $=\quad 5.92$ cfs @ 12.08 hrs, Volume= 0.457 af, Depth= 6.94"
Routed to Pond 1AP : SPORTS COMPLEX INFILTRATION BASIN
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 100-year Rainfall=7.90"

Summary for Subcatchment 1B:

Runoff $=6.69 \mathrm{cfs} @ 12.08 \mathrm{hrs}$, Volume= $\quad 0.512$ af, Depth= 6.83"
Routed to Pond 1BP : SPORTS COMPLEX INFILTRATION BASIN
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 100-year Rainfall=7.90"

Area	ac)	CN	Description			
0.	. 100	$\begin{aligned} & 98 \\ & 39 \end{aligned}$	Pavement			
	. 100	91	Weighted Average 11.11\% Pervious Area 88.89\% Impervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)		Slope (ft/ft)	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description
6.0						Direct Entry

Summary for Subcatchment 1C:

Assumed pipe channel has slope 0.005 since no data given
Runoff $=91.06 \mathrm{cfs} @ 12.60 \mathrm{hrs}$, Volume= $\quad 14.461$ af, Depth= 6.47"
Routed to Pond 1CP : MEMORIAL GROVE AVE. BASIN

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 100-year Rainfall=7.90"

[^25]
Summary for Subcatchment 1D:

Runoff $=44.05$ cfs @ 12.99 hrs, Volume= 9.044 af, Depth= 3.70"
Routed to Pond 1DP : UPSTREAM DOGLEG
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 100-year Rainfall=7.90"

[^26]
Summary for Subcatchment 1E:

Runoff $=730.46$ cfs @ 12.09 hrs, Volume $=53.090$ af, Depth= $5.76{ }^{\prime \prime}$ Routed to Pond 1IP : TACAN

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 100-year Rainfall=7.90"

Summary for Subcatchment 1F:

Runoff $=69.00$ cfs @ 12.09 hrs, Volume= 5.082 af, Depth= 6.12"
Routed to Pond 1FP : EXISTING PARKWAY BASIN
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 100-year Rainfall=7.90"

Summary for Subcatchment 1G:

Runoff $=13.80$ cfs @ 12.37 hrs, Volume= 1.840 af, Depth= 6.94"
Routed to Pond 1GP : SPORTS COMPLEX BASIN
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 100-year Rainfall=7.90"

Summary for Subcatchment 1H:

Runoff = 10.05 cfs @ 12.08 hrs, Volume= 0.790 af, Depth= 7.18"
Routed to Pond 1HP : SPORTS COMPLEX BASIN
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 100-year Rainfall=7.90"

Summary for Subcatchment 1I:
Runoff $=147.28$ cfs @ 13.39 hrs, Volume= $\quad 38.179$ af, Depth= 4.15"
Routed to Pond 1IP : TACAN
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 100-year Rainfall=7.90"

[^27]
Summary for Subcatchment 1J:

Runoff $=34.90$ cfs @ 12.08 hrs, Volume= 2.873 af, Depth= 7.66" Routed to Pond 1LP : CENTRAL GREENWAY

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 100-year Rainfall=7.90"

	Area (ac)	CN	Description
*	4.500	98	Pavement
	4.500		100.00\% Impervious Area

| Tc
 (min) | Length
 (feet) | Slope
 $(\mathrm{ft} / \mathrm{ft})$ | Velocity
 $(\mathrm{ft} / \mathrm{sec})$ | Capacity
 (cfs) |
| ---: | ---: | ---: | ---: | :--- | Description | Direct Entry, |
| :--- |

Summary for Subcatchment 1K:

Runoff $=182.56$ cfs @ 12.14 hrs, Volume $=15.605$ af, Depth= 6.47" Routed to Pond 1LP : CENTRAL GREENWAY

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 100-year Rainfall=7.90"

Area	ac) C	Description			
28.940		Proposed Development Area			
	940	100	00\% Perv	us Area	
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
10.0					Direct Entry

Summary for Subcatchment 1L:

Runoff $=184.08$ cfs @ 12.14 hrs, Volume= 15.555 af, Depth= 6.23"
Routed to Pond 1LP : CENTRAL GREENWAY
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 100-year Rainfall=7.90"

Summary for Subcatchment 1M:

Runoff $=62.45 \mathrm{cfs} @ 12.14 \mathrm{hrs}$, Volume= $\quad 5.250$ af, Depth= 6.12"
Routed to Pond 1MP : CENTRAL GREENWAY
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 100-year Rainfall=7.90"

Summary for Subcatchment 1N:

Assumed slope of 0.002
Runoff $=\quad 155.00$ cfs @ 12.14 hrs, Volume $=$
Routed to Pond 1 NP $:$ WEST GREENWAY

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 100-year Rainfall=7.90"

Summary for Subcatchment 10:

Runoff $=54.10$ cfs @ 12.08 hrs, Volume= 4.028 af, Depth= 6.35"
Routed to Pond 1OP : WEST GREENWAY
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 100-year Rainfall=7.90"

Summary for Subcatchment 1P:

Runoff $=135.71$ cfs @ 12.08 hrs, Volume= $\quad 10.106$ af, Depth= 6.35"
Routed to Pond 1PP : WEST GREENWAY
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 100-year Rainfall=7.90"

Area	(ac)	CN	Des	cription		
$\begin{array}{r} 17.420 \\ 1.670 \\ \hline \end{array}$		88	Proposed Development Area$>75 \%$ Grass cover, Good, HSG C			
		74				
19.090		87	Weighted Average 100.00\% Pervious Area			
	090					
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Len (fe		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.0						Direct Entry

Summary for Subcatchment 1Q:

Runoff $=120.35$ cfs @ 12.08 hrs, Volume= 8.962 af, Depth= 6.35"
Routed to Pond 1QP : WEST GREENWAY
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 100-year Rainfall=7.90"

Area	(ac)	CN	Des	cription		
$\begin{array}{r} 15.260 \\ 1.670 \\ \hline \end{array}$		88	Proposed Development Area$>75 \%$ Grass cover, Good, HSG C			
		74				
16.930		87	Weighted Average			
16.930			100.00\% Pervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Len (fe		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.0						Direct Entry

Summary for Subcatchment 2A:

Runoff = 243.75 cfs @ 13.29 hrs, Volume= 61.264 af, Depth= 5.18"
Routed to Pond 2AP : FRENCH'S STREAM WEST BRANCH
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 100-year Rainfall=7.90"

Summary for Subcatchment 2B:

Runoff $=311.35$ cfs @ 12.08 hrs, Volume= $\quad 24.480$ af, Depth= 7.18"
Routed to Pond 2BP : EXISTING BASIN
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 100-year Rainfall=7.90"

Summary for Subcatchment 2C:

Runoff = 97.87 cfs @ 12.08 hrs, Volume= 7.860 af, Depth= 7.42"
Routed to Pond 2CP : EXISTING PARKWAY BASIN
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 100-year Rainfall=7.90"

Summary for Subcatchment 2D-1:

Runoff $=16.29$ cfs @ 12.08 hrs, Volume= 1.341 af, Depth= 7.66"
Routed to Pond 2DP : EXISTING PARKWAY BASIN
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 100-year Rainfall=7.90"

Area (ac)		CN	Description
2.100	98	Pavement	
		100.00% Impervious Area	

| Tc
 (min) | Length
 (feet) | Slope
 $(\mathrm{ft} / \mathrm{ft})$ | Velocity
 $(\mathrm{ft} / \mathrm{sec})$ | Capacity
 (cfs) |
| ---: | ---: | ---: | ---: | :--- | Description | Direct Entry, |
| :--- |

Summary for Subcatchment 2D-2:

Runoff $=0.56$ cfs @ 12.12 hrs , Volume= 0.062 af, Depth= 1.12"
Routed to Pond 2DP : EXISTING PARKWAY BASIN
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 100-year Rainfall=7.90"

Area (ac)	CN	Description
0.670	39	$>75 \%$ Grass cover, Good, HSG A
0.670		100.00% Pervious Area

| Tc
 (min) | Length
 (feet) | Slope
 $(\mathrm{ft} / \mathrm{ft})$ | Velocity
 $(\mathrm{ft} / \mathrm{sec})$ | Capacity
 (cfs) |
| ---: | ---: | ---: | ---: | :--- | Description | Direct Entry, |
| :--- |

Summary for Subcatchment 2E:

Runoff $=61.83$ cfs @ 13.28 hrs , Volume= $\quad 14.669$ af, Depth= $3.59{ }^{\prime \prime}$
Routed to Pond 2EP : FRENCH'S STREAM WEST BRANCH
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 100-year Rainfall=7.90"

89.9 1,134 Total

Summary for Subcatchment 2F:

Runoff $=100.81$ cfs @ 12.92 hrs, Volume $=20.270$ af, Depth= 3.93"
Routed to Pond 2FP : FRENCH'S STREAM WEST BRANCH
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 100-year Rainfall=7.90"

Area (ac)		Description				
20.57025.620		Woods, Good, HSG B				
		Woods, Good, HSG D				
15.770		$1>75 \%$ Grass cover, Good			HSG B	
	960	$\begin{array}{ll} \hline 66 & \text { Weic } \\ & 100 . \end{array}$	hted Ave 0\% Perv	age us Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	$\begin{array}{r} \text { Length } \\ \text { (feet) } \\ \hline \end{array}$	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity (ft/sec)	Capacity (cfs)	Description	
47.9	100	0.0100	0.03		Sheet Flow, Woods: Dense underbrush n= 0.800	P2= 3.40"
22.5	675	0.0100	0.50		Shallow Concentrated Flow, Woodland $\mathrm{Kv}=5.0 \mathrm{fps}$	

$70.4 \quad 775$ Total

Summary for Subcatchment 2G:

Assumed Tc value
Runoff $=31.00$ cfs @ 13.47 hrs, Volume= $\quad 9.092$ af, Depth= 6.59"
Routed to Pond 2AP : FRENCH'S STREAM WEST BRANCH

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 100-year Rainfall=7.90"

Summary for Subcatchment 2H:

Assumed Tc value
Runoff $=\quad 14.69 \mathrm{cfs} @ 13.47$ hrs, Volume $=\quad 4.218$ af, Depth= 5.76"
Routed to Pond 2AP:FRENCH'S STREAM WEST BRANCH

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 100-year Rainfall=7.90"

Summary for Subcatchment 2l-1:

Runoff $=150.64$ cfs @ 12.14 hrs, Volume $=12.876$ af, Depth= 6.47"
Routed to Pond 2IP : PROPOSED PHASE 1 BASIN
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 100-year Rainfall=7.90"

| | Area (ac) | CN |
| ---: | ---: | :--- | Description \quad| $*$ | 23.880 | 88 |
| :--- | :--- | :--- |
| 23.880 | | Proposed Development Area |

| Tc
 (min) | Length
 (feet) | Slope
 $(\mathrm{ft} / \mathrm{ft})$ | Velocity
 $(\mathrm{ft} / \mathrm{sec})$ |
| ---: | ---: | ---: | :--- | | Capacity |
| ---: |
| (cfs) |\quad Description | Direct Entry, |
| :--- |

Summary for Subcatchment 2J:

Runoff = 111.75 cfs @ 12.08 hrs, Volume= 8.322 af, Depth= 6.35"
Routed to Pond 2JP : PROPOSED BASIN
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 100-year Rainfall=7.90"

Area	(ac)	CN	Des	cription		
$\begin{array}{r} 14.430 \\ 1.290 \\ \hline \end{array}$		$\begin{aligned} & \hline 88 \\ & 80 \end{aligned}$	Proposed Development Area$>75 \%$ Grass cover, Good, HSG D			
$\begin{aligned} & 15.720 \\ & 15.720 \end{aligned}$		87	Weighted Average 100.00\% Pervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)		Slope (ft/ft)	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description
6.0						Direct Entry

Summary for Subcatchment 2K:

Runoff $=143.23$ cfs @ 12.09 hrs, Volume $=10.499$ af, Depth= 6.00" Routed to Pond 2KP : PROPOSED BASIN

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 100-year Rainfall=7.90"

Summary for Subcatchment 2L:

Runoff $=76.93$ cfs @ 12.08 hrs, Volume= $\quad 5.764$ af, Depth= 6.47"
Routed to Pond 2LP : PROPOSED BASIN
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 100-year Rainfall=7.90"

	Area (ac)	CN	Description
*	10.690	88	Proposed Development Area
	10.690		100.00\% Pervious Area

| Tc
 (min) | Length
 (feet) | Slope
 $(\mathrm{ft} / \mathrm{ft})$ | Velocity
 $(\mathrm{ft} / \mathrm{sec})$ | Capacity
 (cfs) |
| ---: | ---: | ---: | ---: | :--- | Description | Direct Entry, |
| :--- |

Summary for Subcatchment 2M:

Runoff = 139.25 cfs @ 12.08 hrs, Volume= 10.434 af, Depth= 6.47"
Routed to Pond 2MP : PROPOSED BASIN
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 100-year Rainfall=7.90"

Area (ac)	CN	Description
19.350	88	Proposed Development Area
		100.00% Pervious Area

| Tc
 (min) | Length
 (feet) | Slope
 $(\mathrm{ft} / \mathrm{ft})$ | Velocity
 $(\mathrm{ft} / \mathrm{sec})$ | Capacity
 (cfs) |
| ---: | ---: | ---: | ---: | :--- | Description | Direct Entry, |
| :--- |

Summary for Subcatchment 3A:

Runoff $=131.39$ cfs @ 12.97 hrs, Volume= 27.297 af, Depth= 5.30"
Routed to Pond 3AP : FRENCH'S STREAM EAST BRANCH
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 100-year Rainfall=7.90"

74.8 1,438 Total

Summary for Subcatchment 3B:

Runoff = 212.96 cfs @ 13.43 hrs, Volume= $\quad 55.695$ af, Depth= 5.07"
Routed to Pond 3BP : FRENCH'S STREAM EAST BRANCH
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 100-year Rainfall=7.90"

Summary for Subcatchment 21-2:

Runoff $=51.28 \mathrm{cfs} @ 12.14 \mathrm{hrs}$, Volume=
Routed to Pond 2IP : PROPOSED PHASE 1 BASIN
4.172 af, Depth= 4.26 "

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 100-year Rainfall=7.90"

Summary for Reach 1R: DP-1 TACAN OUTFALL

Inflow Area $=377.860$ ac, 3.40% Impervious, Inflow Depth >5.48 " for 100-year event
Inflow $=121.54$ cfs @ 15.95 hrs, Volume $=172.424$ af
Outflow = 121.54 cfs @ 15.95 hrs , Volume $=172.424 \mathrm{af}$, Atten= 0%, Lag $=0.0 \mathrm{~min}$
Routed to Pond 2FP : FRENCH'S STREAM WEST BRANCH
Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs

Summary for Reach 2R: DP-2 FRENCH'S STREAM WEST BRANCH
Inflow Area $=872.630$ ac, 11.83% Impervious, Inflow Depth >5.23 " for 100-year event
Inflow $=392.51$ cfs @ 13.51 hrs, Volume $=380.682$ af
Outflow $=392.51$ cfs @ 13.51 hrs , Volume $=380.682 \mathrm{af}$, Atten $=0 \%$, Lag $=0.0 \mathrm{~min}$
Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs

Summary for Reach 3R: DP-3 FRENCH'S STREAM EAST BRANCH

```
Inflow Area = 193.720 ac, 8.56% Impervious, Inflow Depth = 5.14" for 100-year event
Inflow = 314.32 cfs @ 13.51 hrs, Volume= 82.986 af
Outflow = 314.32 cfs @ 13.51 hrs, Volume= 82.986 af, Atten= 0%, Lag= 0.0 min
```

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs

Summary for Pond 1AP: SPORTS COMPLEX INFILTRATION BASIN

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 171.41' @ 12.08 hrs Surf.Area= 2,201 sf Storage= 2,834 cf
Plug-Flow detention time $=82.8 \mathrm{~min}$ calculated for 0.457 af (100% of inflow)
Center-of-Mass det. time= 82.8 min (852.2-769.4)

Volume	Invert	Avail.Storage	Storage Description
\#1A	168.50'	1,559 cf	24.83'W x 88.64'L x 2.33'H Field A
			5,136 cf Overall - 1,238 cf Embedded = 3,898 cf x 40.0\% Voids
\#2A	169.00'	1,238 cf	ADS_StormTech SC-310 +Capx 84 Inside \#1
			Effective Size $=28.9$ "W x 16.0"H => $2.07 \mathrm{sf} \times 7.12^{\prime} \mathrm{L}=14.7 \mathrm{cf}$
			Overall Size $=34.0$ "W $\times 16.0^{\prime \prime} \mathrm{H} \times 7.56{ }^{\text {'L }}$ with 0.44 ' Overlap
			84 Chambers in 7 Rows
\#3	168.50'	85 cf	4.00'D x 6.80'H CB-Impervious
\#4	175.20'	449 cf	Ponding at CB (Prismatic)Listed below (Recalc)

> 3,332 cf Total Available Storage

Storage Group A created with Chamber Wizard

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
175.20	10	0	0
176.00	300	124	124
176.50	1,000	325	449

Device	Routing	Invert	Outlet Devices
\#1	Primary	170.00'	18.0" Round Culvert
			$\mathrm{L}=13.0$ ' RCP, end-section conforming to fill, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 170.00' $/ 169.85^{\prime} \quad \mathrm{S}=0.0115^{\prime} / / \quad \mathrm{Cc}=0.900$ $n=0.013$, Flow Area $=1.77$ sf
\#2	Discarded	168.50'	2.410 in/hr Exfiltration over Surface area Phase-In= 0.01 '

Discarded OutFlow Max=0.12 cfs @ $8.94 \mathrm{hrs} \mathrm{HW}=168.58$ ' (Free Discharge)
$\mathbf{2}=$ Exfiltration (Exfiltration Control 0.12 cfs)
L2=Exfiltration (Exfiltration Controls 0.12 cfs)
Primary OutFlow Max=5.80 cfs @ 12.08 hrs HW=171.41' TW=152.81' (Dynamic Tailwater)
L-1=Culvert (Barrel Controls 5.80 cfs @ 4.37 fps)

Pond 1AP: SPORTS COMPLEX INFILTRATION BASIN - Chamber Wizard Field A
Chamber Model = ADS_StormTechSC-310 +Cap (ADS StormTech®SC-310 with cap length)
Effective Size $=28.9$ "W $\times 16.0^{\prime \prime} \mathrm{H}=>2.07 \mathrm{sf} \times 7.12$ 'L $=14.7 \mathrm{cf}$
Overall Size $=34.0 \mathrm{~W} \mathrm{~W} \times 16.0^{\prime \prime} \mathrm{H} \times 7.56^{\prime} \mathrm{L}$ with 0.44 ' Overlap
34.0" Wide +6.0 " Spacing $=40.0$ " C-C Row Spacing

12 Chambers/Row x 7.12' Long +0.60' Cap Length $x 2=86.64$ ' Row Length $+12.0^{\prime \prime}$ End Stone $\times 2=88.64^{\prime}$ Base Length
7 Rows x 34.0" Wide + 6.0" Spacing x $6+12.0$ " Side Stone x 2 = 24.83' Base Width
6.0" Stone Base + 16.0" Chamber Height $+6.0^{\prime \prime}$ Stone Cover $=2.33$ ' Field Height

84 Chambers $\times 14.7$ cf $=1,238.3$ cf Chamber Storage
5,136.2 cf Field $-1,238.3$ cf Chambers $=3,897.9$ cf Stone $\times 40.0 \%$ Voids $=1,559.1$ cf Stone Storage
Chamber Storage + Stone Storage $=2,797.5 \mathrm{cf}=0.064$ af
Overall Storage Efficiency = 54.5\%
Overall System Size $=88.64^{\prime} \times 24.83$ ' $\times 2.33^{\prime}$
84 Chambers
190.2 cy Field
144.4 cy Stone

Summary for Pond 1BP: SPORTS COMPLEX INFILTRATION BASIN

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 171.80' @ 12.08 hrs Surf.Area= 2,378 sf Storage= 3,060 cf
Plug-Flow detention time $=80.7 \mathrm{~min}$ calculated for 0.512 af (100% of inflow)
Center-of-Mass det. time= 80.7 min (853.7-772.9)

Volume	Invert	Avail.Storage	Storage Description
\#1A	169.00'	1,683 cf	24.83'W x 95.76'L x 2.33 'H Field A
			5,549 cf Overall - 1,342 cf Embedded $=4,207$ cf $\times 40.0 \%$ Voids
\#2A	169.50'	1,342 cf	ADS_StormTech SC-310 +Capx 91 Inside \#1
			Effective Size= 28.9"W x 16.0"H => $2.07 \mathrm{sf} \times 7.12 \mathrm{~L}=14.7 \mathrm{c}$
			Overall Size=34.0"W x 16.0"H x 7.56'L with 0.44' Overlap
			91 Chambers in 7 Rows
\#3	169.00'	72 cf	4.00'D x 5.70'H CB-Impervious
\#4	172.70'	572 cf	Ponding at CB (Prismatic)Listed below (Recalc)

> 3,668 cf Total Available Storage

Storage Group A created with Chamber Wizard

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
172.70	10	0	0
173.00	300	47	47
174.50	400	525	572

Device	Routing	Invert	Outlet Devices
\#1	Primary	170.50'	12.0" Round Culvert X 2.00
			$\mathrm{L}=23.0$ ' RCP, end-section conforming to fill, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 170.50' / 170.20' S=0.0130 '/' Cc= 0.900
\#2	Discarded	169.00'	$2.410 \mathrm{in} / \mathrm{hr}$ Exfiltration over Surface area Phase-In= $0.01{ }^{\prime}$

Discarded OutFlow Max=0.13 cfs @ $8.82 \mathrm{hrs} \mathrm{HW}=169.06$ ' (Free Discharge)
2=Exfiltration (Exfiltration Controls 0.13 cfs)
Primary OutFlow Max=6.70 cfs @ 12.08 hrs HW=171.78' TW=152.80' (Dynamic Tailwater)
L-1=Culvert (Inlet Controls 6.70 cfs @ 4.27 fps)

Pond 1BP: SPORTS COMPLEX INFILTRATION BASIN - Chamber Wizard Field A
Chamber Model = ADS_StormTechSC-310 +Cap (ADS StormTech®SC-310 with cap length)
Effective Size $=28.9$ "W $\times 16.0^{\prime \prime} \mathrm{H}=>2.07 \mathrm{sf} \times 7.12$ 'L $=14.7 \mathrm{cf}$
Overall Size $=34.0 \mathrm{~W} \mathrm{~W} \times 16.0^{\prime \prime} \mathrm{H} \times 7.56^{\prime} \mathrm{L}$ with 0.44 ' Overlap
34.0" Wide +6.0 " Spacing $=40.0$ " C-C Row Spacing

13 Chambers/Row x 7.12' Long +0.60' Cap Length $x 2=93.76$ ' Row Length $+12.0^{\prime \prime}$ End Stone $\times 2=95.76^{\prime}$ Base Length
7 Rows x 34.0" Wide + 6.0" Spacing x $6+12.0$ " Side Stone x 2 = 24.83' Base Width
6.0" Stone Base + 16.0" Chamber Height +6.0 " Stone Cover $=2.33$ ' Field Height

91 Chambers $\times 14.7$ cf $=1,341.5$ cf Chamber Storage
$5,548.8$ cf Field $-1,341.5$ cf Chambers $=4,207.2$ cf Stone $\times 40.0 \%$ Voids $=1,682.9$ cf Stone Storage
Chamber Storage + Stone Storage $=3,024.4 \mathrm{cf}=0.069 \mathrm{af}$
Overall Storage Efficiency $=54.5 \%$
Overall System Size $=95.76$ x 24.83 ' x 2.33^{\prime}
91 Chambers
205.5 cy Field
155.8 cy Stone

Summary for Pond 1CP: MEMORIAL GROVE AVE. BASIN

Assumed slope of 0.005 for outlet culvert.

Inflow Area =Inflow $=$	47.860 ac, 44.44% Impervious, Inflow Depth $=6.33$ " for 100-year event			
	154.87 cfs @	12.43 hrs, Volume=	25.264 af	
Outflow	59.97 cfs @	13.15 hrs , Volume=	25.200 af, A	Atten= 61\%, Lag= 43.1 mi
Primary = Routed to	$45.10 \text { cfs @ }$ ad 1DP : UPS	13.15 hrs , Volume= TREAM DOGLEG	24.244 af	
Secondary = Routed to	14.87 cfs @ d 1DP : UPS	13.15 hrs , Volume= TREAM DOGLEG	0.956 af	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 156.68' @ 13.15 hrs Surf.Area= 87,287 sf Storage $=439,423$ cf
Plug-Flow detention time $=146.5 \mathrm{~min}$ calculated for 25.200 af (100% of inflow)
Center-of-Mass det. time= 144.6 min (961.9-817.3)

Primary OutFlow Max=45.10 cfs @ 13.15 hrs HW=156.68' TW=148.15' (Dynamic Tailwater)
L1=Culvert (Inlet Controls 45.10 cfs @ 11.34 fps)
Secondary OutFlow Max=14.87 cfs @ 13.15 hrs HW=156.68' TW=148.15' (Dynamic Tailwater)
L-2=Broad-Crested Rectangular Weir(Weir Controls 14.87 cfs @ 2.20 fps)

Summary for Pond 1DP: UPSTREAM DOGLEG

 Routed to Pond 2IP : PROPOSED PHASE 1 BASIN

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 148.22' @ 13.26 hrs Surf.Area= 15,507 sf Storage= 27,924 cf
Plug-Flow detention time $=4.4 \mathrm{~min}$ calculated for 34.245 af (100% of inflow)
Center-of-Mass det. time $=4.4 \mathrm{~min}$ (949.8-945.4)

Summary for Pond 1FP: EXISTING PARKWAY BASIN

Primary Culvert - Assumed Inverts, pipe diameter, and pipe material.

Inflow Area =	9.970 ac	mpervious	6	for 100-year event
Inflow	69.00 cfs @	12.09 hrs , Volume=	5.082 af	
Outflow	14.01 cfs @	12.51 hrs , Volume=	3.591 af, At	Atten $=80 \%$, Lag $=25.7 \mathrm{~min}$
Primary = Routed to	14.01 cfs @ d 1IP: TACA	12.51 hrs , Volume=	3.591 af	
Secondary = Routed to	$\begin{aligned} & 0.00 \mathrm{cfs} @ \\ & 1 \mathrm{P} \text { : TACAI } \end{aligned}$	0.00 hrs , Volume= N	0.000 af	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 148.63' @ 12.51 hrs Surf.Area= 28,783 sf Storage= 119,124 cf
Plug-Flow detention time= 263.8 min calculated for 3.591 af (71% of inflow)
Center-of-Mass det. time= 173.0 min (963.9-790.9)

Device Routing Invert Outlet Devices
\#1 Primary 146.50' 24.0" Round Culvert
$\mathrm{L}=98.0^{\prime}$ RCP, end-section conforming to fill, $\mathrm{Ke}=0.500$ Inlet / Outlet Invert= 146.50' / 146.00' S=0.0051 '/' Cc= 0.900 $\mathrm{n}=0.013$ Concrete pipe, bends \& connections, Flow Area= 3.14 sf
\#2 Secondary 150.00 10.0' long x 20.0' breadth Broad-Crested Rectangular Weir Head (feet) $0.20 \quad 0.400 .60 \quad 0.801 .001 .201 .401 .60$ Coef. (English) 2.682 .702 .702 .642 .632 .642 .642 .63

Primary OutFlow Max=14.01 cfs @ 12.51 hrs HW=148.63' TW=144.47' (Dynamic Tailwater)
—1=Culvert (Barrel Controls 14.01 cfs @ 5.22 fps)
Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=143.00' TW=133.50' (Dynamic Tailwater)
$\complement_{2=B r o a d-C r e s t e d ~ R e c t a n g u l a r ~ W e i r(~ C o n t r o l s ~} 0.00$ cfs)

Summary for Pond 1GP: SPORTS COMPLEX BASIN

Inflow Area =	$3.180 \mathrm{ac}, 58.18 \%$ Impervious, Inflow Depth $=6.94{ }^{\prime \prime}$ for 100-year event			
Inflow	13.80 cfs @	12.37 hrs , Volume=	1.840 af	
Outflow	13.09 cfs @	12.47 hrs , Volume=	1.832 af, Atten $=5 \%$, Lag $=6.0 \mathrm{~min}$	
Primary	5.76 cfs @	12.47 hrs , Volume=	1.607 af	
Routed to	d 1LP : CE	TRAL GREENWAY		
Secondary =	7.33 cfs @	12.47 hrs , Volume=	0.225 af	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 169.75' @ 12.47 hrs Surf.Area= 4,540 sf Storage $=9,423 \mathrm{cf}$
Plug-Flow detention time $=20.8 \mathrm{~min}$ calculated for 1.832 af (100% of inflow)
Center-of-Mass det. time= 18.1 min (809.0-790.9)

Primary OutFlow Max=5.76 cfs @ 12.47 hrs HW=169.75' TW=152.34' (Dynamic Tailwater)
—1=Culvert (Barrel Controls 5.76 cfs @ 7.34 fps)
Secondary OutFlow Max=7.33 cfs @ 12.47 hrs HW=169.75' TW=152.34' (Dynamic Tailwater)
L2=Broad-Crested Rectangular Weir(Weir Controls 7.33 cfs @ 1.81 fps)

Summary for Pond 1HP: SPORTS COMPLEX BASIN

Inflow Area =	1.320	75.76\% Impervious,	th $=7.18$	" ${ }^{\prime \prime}$ for 100-year event
Inflow	10.05 cfs @	12.08 hrs , Volume=	0.790 af	
Outflow	7.89 cfs @	12.15 hrs , Volume=	0.788 af, Atten= 21%, Lag $=3.7 \mathrm{~min}$	
Primary	5.00 cfs @	12.15 hrs , Volume=	0.755 af	
Routed to	d 1LP : CEN	TRAL GREENWAY		
Secondary =	2.89 cfs @	12.15 hrs , Volume=	0.033 af	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 164.79' @ 12.15 hrs Surf.Area= 3,201 sf Storage= 2,902 cf
Plug-Flow detention time $=8.2 \mathrm{~min}$ calculated for 0.788 af (100% of inflow)
Center-of-Mass det. time $=6.2 \mathrm{~min}(767.9-761.7)$

Primary OutFlow Max=5.00 cfs @ 12.15 hrs HW=164.79' TW=151.13' (Dynamic Tailwater)
-1=Culvert (Barrel Controls 5.00 cfs @ 6.36 fps)
Secondary OutFlow Max=2.88 cfs @ 12.15 hrs HW=164.79' TW=151.13' (Dynamic Tailwater)
—2=Broad-Crested Rectangular Weir(Weir Controls 2.88 cfs @ 1.44 fps)

Summary for Pond 1IP: TACAN

 Routed to Reach 1R : DP-1 TACAN OUTFALL

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 146.12' @ 15.95 hrs Surf.Area= 1,429,074 sf Storage= 3,522,887 cf
Plug-Flow detention time $=415.4$ min calculated for 172.424 af (100% of inflow)
Center-of-Mass det. time $=415.3 \mathrm{~min}(1,324.2-908.8$)

Summary for Pond 1LP: CENTRAL GREENWAY

Inflow Area =	67.880	,	Depth = 6.48"	for
Inflow	407.92 cfs @	12.13 hrs , Volume=	36.653 af	
Outflow	175.95 cfs @	12.37 hrs , Volume=	36.648 af, A	Atten $=57 \%$, Lag $=14.3 \mathrm{~min}$
Primary	125.13 cfs @	12.25 hrs , Volume=	34.785 af	
Routed to	1MP : CE	ITRAL GREENWAY		
Secondary =	73.95 cfs @	12.43 hrs , Volume=	1.863 a	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 152.35' @ 12.43 hrs Surf.Area= 102,440 sf Storage= $390,710 \mathrm{cf}$
Plug-Flow detention time $=48.1 \mathrm{~min}$ calculated for 36.643 af (100% of inflow)
Center-of-Mass det. time $=48.2 \mathrm{~min}(834.1-785.8)$

Primary OutFlow Max=123.22 cfs @ 12.25 hrs HW=152.03' TW=150.26' (Dynamic Tailwater)
L1=Culvert (Inlet Controls 123.22 cfs @ 6.40 fps)
Secondary OutFlow Max=73.93 cfs @ 12.43 hrs HW=152.35' TW=151.29' (Dynamic Tailwater)
—2=Broad-Crested Rectangular Weir(Weir Controls 73.93 cfs @ 1.60 fps)

Summary for Pond 1MP: CENTRAL GREENWAY

Inflow Area =	78.180 ac ,	9.40\% Impervious,	pth $=6.4$	for 100-year event
Inflow	206.04 cfs @	12.35 hrs , Volume=	41.898 af	
Outflow	176.52 cfs @	12.50 hrs , Volume=	41.895 af, A	Atten= 14\%, Lag $=8.9 \mathrm{~min}$
Primary = Routed to	$\begin{array}{r} 99.51 \text { cfs @ } \\ \text { ond 1IP : TACA } \end{array}$	12.50 hrs , Volume=	40.139 af	
Secondary = Routed to	77.01 cfs @ d 1IP : TACA	12.50 hrs , Volume $=$	1.756 af	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 151.36' @ 12.50 hrs Surf.Area= 62,344 sf Storage $=228,908$ cf
Plug-Flow detention time $=29.9$ min calculated for 41.895 af (100% of inflow)
Center-of-Mass det. time $=29.7 \mathrm{~min}(858.8-829.1)$

Primary OutFlow Max=99.51 cfs @ 12.50 hrs HW=151.36' TW=144.45' (Dynamic Tailwater)
L-CCulvert (Inlet Controls 99.51 cfs @ 10.34 fps)
Secondary OutFlow Max=76.97 cfs @ 12.50 hrs HW=151.36' TW=144.45' (Dynamic Tailwater)
L-2=Broad-Crested Rectangular Weir(Weir Controls 76.97 cfs @ 1.63 fps)

Summary for Pond 1NP: WEST GREENWAY

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 151.84' @ 14.20 hrs Surf.Area= 103,091 sf Storage= 331,289 cf
Plug-Flow detention time $=366.8 \mathrm{~min}$ calculated for 13.060 af (100% of inflow)
Center-of-Mass det. time $=364.9 \mathrm{~min}(1,156.8-791.9)$

Primary OutFlow Max=10.54 cfs @ 19.01 hrs HW=150.96' TW=150.42' (Dynamic Tailwater)
$L_{1=C u l v e r t ~(O u t l e t ~ C o n t r o l s ~}^{10.54}$ cfs @ 3.35 fps)
Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=147.00' TW=146.00' (Dynamic Tailwater)
$\complement_{2=B r o a d-C r e s t e d ~ R e c t a n g u l a r ~ W e i r(~ C o n t r o l s ~} 0.00$ cfs)

Summary for Pond 10P: WEST GREENWAY

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 151.42' @ 13.87 hrs Surf.Area= 28,697 sf Storage= 81,019 cf
Plug-Flow detention time= 64.1 min calculated for 17.084 af (100% of inflow)
Center-of-Mass det. time $=63.3 \mathrm{~min}(1,132.5-1,069.2)$

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	146.00^{\prime}	110,744 cf	Custom Stage Data (Prismatic)Listed below (Recalc)

Elevation (feet)	Surf.Area $($ sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
146.00	3,480	0	0
147.00	6,760	5,120	5,120
148.00	10,685	8,723	13,843
149.00	15,260	12,973	26,815
150.00	20,485	17,873	44,688
151.00	28,355	24,420	69,108
152.00	29,175	28,765	97,873
152.42	32,120	12,872	110,744

Device	Routing	Invert	Outlet Devices
\#1	Primary	146.00'	24.0" Round Culvert
			$\mathrm{L}=140.0^{\prime} \mathrm{RCP}$, end-section conforming to fill, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 146.00' / 145.50' S=0.0036 '/' Cc= 0.900
			$\mathrm{n}=0.013$ Concrete pipe, bends \& connections, Flow Area=3.14 sf
\#2	Secondary	152.00'	115.0' long x 50.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.200 .400 .600 .801 .001 .201 .401 .60
			Coef. (English) 2.682 .702 .702 .642 .632 .642 .642 .63

Primary OutFlow Max=13.46 cfs @ 17.18 hrs HW=150.91' TW=149.99' (Dynamic Tailwater)
—1=Culvert (Outlet Controls 13.46 cfs @ 4.29 fps)
Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=146.00' TW=145.00' (Dynamic Tailwater)
—2=Broad-Crested Rectangular Weir(Controls 0.00 cfs)

Summary for Pond 1PP: WEST GREENWAY

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev=150.67' @ 13.38 hrs Surf.Area= 76,907 sf Storage= 259,733 cf
Plug-Flow detention time $=143.8$ min calculated for 27.148 af (100% of inflow)
Center-of-Mass det. time $=140.5 \mathrm{~min}(1,143.9-1,003.5)$

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	145.00	319,950 cf	Custom Stage Data (Prismatic)Listed below (Recalc)

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
145.00	13,590	0	0
146.00	24,145	18,868	18,868
147.00	35,350	29,748	48,615
148.00	47,205	41,278	89,893
149.00	59,705	53,455	143,348
150.00	72,855	66,280	209,628
151.00	78,910	75,883	285,510
151.42	85,090	34,440	319,950

Device	Routing	Invert	Outlet Devices
\#1	Primary	145.00'	24.0" Round Culvert
			$\mathrm{L}=188.0$ ' RCP, end-section conforming to fill, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 145.00' 144.50 ' S=0.0027 '/' Cc= 0.900
			$\mathrm{n}=0.013$ Concrete pipe, bends \& connections, Flow Area=3.14 sf
\#2	Secondary	151.00'	115.0' long x 50.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.200 .400 .600 .801 .001 .201 .401 .60
			Coef. (English) 2.682 .702 .702 .642 .632 .642 .642 .63

Primary OutFlow Max=22.66 cfs @ 14.53 hrs HW=150.55' TW=147.45' (Dynamic Tailwater)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=145.00' TW=144.00' (Dynamic Tailwater)
—2=Broad-Crested Rectangular Weir(Controls 0.00 cfs)

Summary for Pond 1QP: WEST GREENWAY

Inflow Area =	68.840 ac	0.00\% Impervious,		for 100-year event
Inflow	135.84 cfs @	12.09 hrs , Volume=	36.114 af	
Outflow	51.64 cfs @	12.34 hrs , Volume=	35.671 af, At	Atten=62\%, Lag= 15.3 min
Primary =	51.64 cfs @ nd 1IP: TACA	12.34 hrs , Volume=	35.671 af	
Secondary = Routed to	$\begin{aligned} & 0.00 \mathrm{cfs} @ \\ & \text { d } 1 \text { IP : TACA } \end{aligned}$	0.00 hrs , Volume=	0.000 af	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 148.44' @ 12.44 hrs Surf.Area= 65,542 sf Storage= 171,143 cf
Plug-Flow detention time $=75.8 \mathrm{~min}$ calculated for 35.671 af (99% of inflow)
Center-of-Mass det. time $=58.8 \mathrm{~min}(1,113.8-1,055.0)$

Primary OutFlow Max=51.52 cfs @ 12.34 hrs HW=148.42' TW=144.17' (Dynamic Tailwater)
—1=Culvert (Outlet Controls 51.52 cfs @ 7.29 fps)
-2=Orifice/Grate (Passes < 44.61 cfs potential flow)
-3=Orifice/Grate (Passes < 7.12 cfs potential flow)
Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=144.00' TW=133.50' (Dynamic Tailwater)
4=Broad-Crested Rectangular Weir(Controls 0.00 cfs)

Summary for Pond 2AP: FRENCH'S STREAM WEST BRANCH

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 148.68' @ 14.62 hrs Surf.Area= 551,529 sf Storage= 893,977 cf
Plug-Flow detention time $=44.6 \mathrm{~min}$ calculated for 106.708 af (100% of inflow)
Center-of-Mass det. time= $44.6 \mathrm{~min}(944.2-899.6)$

| Volume | Invert | Avail.Storage | Storage Description |
| ---: | ---: | ---: | ---: | ---: |
| $\# 1$ | 141.70 ' | $1,815,201 \mathrm{cf}$ | Custom Stage Data (Pr |
| Clevation
 (feet) | Surf.Area
 (sq-ft) | Inc.Store
 (cubic-feet) | Cum.Store
 (cubic-feet) |
| 141.70 | 0 | 0 | 0 |
| 144.00 | 6,640 | 7,636 | 7,636 |
| 145.00 | 57,230 | 31,935 | 39,571 |
| 146.00 | 117,540 | 87,385 | 126,956 |
| 147.00 | 216,860 | 167,200 | 294,156 |
| 148.00 | 359,360 | 288,110 | 582,266 |
| 149.00 | 640,140 | 499,750 | $1,082,016$ |
| 150.00 | 826,230 | 733,185 | $1,815,201$ |

Device	Routing	Invert	Outlet Devices
\#1	Primary	141.70'	48.0" Round Culvert
			$\mathrm{L}=126.0$ ' RCP, end-section conforming to fill, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 141.70' / 141.60' S=0.0008'/l' Cc=0.900 $\mathrm{n}=0.013$, Flow Area= 12.57 sf
\#2	Secondary	141.70'	48.0" Round Culvert
			$\mathrm{L}=126.0^{\prime} \mathrm{RCP}$, end-section conforming to fill, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 141.70' / 141.50' S=0.0016 '/' Cc= 0.900
			$\mathrm{n}=0.013$, Flow Area= 12.57 sf

Primary OutFlow Max=88.37 cfs @ 13.10 hrs HW=147.27' TW=145.13' (Dynamic Tailwater)
—1=Culvert (Inlet Controls 88.37 cfs @ 7.03 fps)
Secondary OutFlow Max=89.18 cfs @ 13.06 hrs HW=147.19' TW=145.02' (Dynamic Tailwater)
—2=Culvert (Inlet Controls 89.18 cfs @ 7.10 fps)

Summary for Pond 2BP: EXISTING BASIN

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev=150.96' @ 12.52 hrs Surf.Area= 94,691 sf Storage $=427,340$ cf
Plug-Flow detention time $=164.8 \mathrm{~min}$ calculated for 24.157 af (99% of inflow)
Center-of-Mass det. time $=156.2 \mathrm{~min}(917.9-761.7$)

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	143.00	482,855 cf	Custom Stage Data (Prismatic)Listed below (Recalc)

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
143.00	10,920	0	0
144.00	16,580	13,750	13,750
145.00	28,700	22,640	36,390
146.00	39,560	34,130	70,520
147.00	53,515	46,538	117,058
148.00	71,930	62,723	179,780
149.00	80,230	76,080	255,860
150.00	88,130	84,180	340,040
151.00	95,000	91,565	431,605
151.50	110,000	51,250	482,855

Device	Routing	Invert	Outlet Devices
\#1	Primary	144.00'	24.0" Round Culvert
			$\mathrm{L}=79.0{ }^{\prime}$ RCP, end-section conforming to fill, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 144.00' / 143.21' S= 0.0100 '/' Cc= 0.900 $\mathrm{n}=0.013$. Flow Area $=3.14 \mathrm{sf}$
\#2	Secondary	150.00'	10.0' long x 20.0 ' breadth Broad-Crested Rectangular Weir Head (feet) $0.20 \quad 0.400 .60 \quad 0.801 .001 .201 .401 .60$
			Coef. (English) 2.682 .702 .702 .642 .632 .642 .642 .63

Primary OutFlow Max=35.20 cfs @ 12.32 hrs HW=150.71' TW=145.30' (Dynamic Tailwater)
_1=Culvert (Inlet Controls 35.20 cfs @ 11.20 fps)
Secondary OutFlow Max=24.57 cfs @ 12.52 hrs HW=150.96' TW=145.83' (Dynamic Tailwater)
—2=Broad-Crested Rectangular Weir(Weir Controls 24.57 cfs @ 2.57 fps)

Summary for Pond 2CP: EXISTING PARKWAY BASIN

Existing basin information taken from Weymouth Patriot Parkway Utility As-Builts, prepared by LM Heavy Civil Construction LLC, dated October 15, 2018.

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 148.32' @ 12.40 hrs Surf.Area= 35,758 sf Storage= 175,315 cf
Plug-Flow detention time= 224.5 min calculated for 5.521 af (70% of inflow)
Center-of-Mass det. time $=130.3 \mathrm{~min}(882.9-752.6$)

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	138.00^{\prime}	$240,905 \mathrm{cf}$	Custom Stage Data (Prismatic)Listed below (Recalc)

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
138.00	730	0	0
139.00	1,695	1,213	1,213
140.00	3,150	2,423	3,635
141.00	6,840	4,995	8,630
142.00	12,885	9,863	18,493
143.00	17,405	15,145	33,638
144.00	21,190	19,298	52,935
145.00	24,465	22,828	75,763
146.00	27,780	26,123	101,885
147.00	31,160	29,470	131,355
148.00	34,590	32,875	164,230
149.00	38,295	36,443	200,673
150.00	42,170	40,233	240,905

Device	Routing	Invert	Outlet Devices
\#1	Primary	142.30'	30.0" Round Culvert
			$\mathrm{L}=65.0^{\prime}$ RCP, end-section conforming to fill, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 142.30' / 141.50' S=0.0123 '/' Cc= 0.900 $n=0.013$, Flow Area $=4.91 \mathrm{sf}$
\#2	Device 1	146.00'	24.0" \times 24.0" Horiz. Orifice/Grate $\mathrm{C}=0.600$

Primary OutFlow Max=29.30 cfs @ 12.40 hrs HW=148.32' TW=142.62' (Dynamic Tailwater)
L-1=Culvert (Passes 29.30 cfs of 51.59 cfs potential flow)

Summary for Pond 2DP: EXISTING PARKWAY BASIN

Existing basin information taken from Weymouth Patriot Parkway Utility As-Builts, prepared by LM Heavy Civil Construction LLC, dated October 15, 2018.

Inflow	2.770 ac, 75.81% Impervious, Inflow Depth $=6.08$ " for 100-year event			
Inflow	16.78 cfs @	12.08 hrs, Volume=	1.403 af	
Outflow	2.33 cfs @	12.60 hrs , Volume=	0.534 af ,	en= 86% Lag $=31.0$
Primary	2.33 cfs @	12.60 hrs , Volume=	0.534 af	

Routed to Pond 2EP : FRENCH'S STREAM WEST BRANCH
Secondary = $\quad 0.00 \mathrm{cfs}$ @ 0.00 hrs , Volume= $\quad 0.000$ af Routed to Pond 2EP : FRENCH'S STREAM WEST BRANCH

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 146.86' @ 15.89 hrs Surf.Area= 11,575 sf Storage= 45,091 cf
Plug-Flow detention time $=412.1$ min calculated for 0.534 af (38% of inflow)
Center-of-Mass det. time= 241.5 min (990.5-749.0)

Primary OutFlow Max=2.33 cfs @ 12.60 hrs HW=146.40' TW=143.39' (Dynamic Tailwater) $1=$ Culvert (Passes 2.33 cfs of 26.24 cfs potential flow)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=139.00' TW=138.00' (Dynamic Tailwater)
$\complement_{3=B r o a d-C r e s t e d ~ R e c t a n g u l a r ~ W e i r(~ C o n t r o l s ~} 0.00$ cfs)

Summary for Pond 2EP: FRENCH'S STREAM WEST BRANCH

Per site visit outlet consists of one 60-inch culvert.

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
138.00	0	0	0
140.00	9,600	9,600	9,600
141.00	1,135	11,368	20,968
142.00	35,665	24,400	45,368
143.00	47,280	41,473	86,840
144.00	58,400	52,840	139,680
145.00	71,585	64,993	204,673
146.00	85,230	78,408	283,080
147.00	106,515	95,873	378,953
148.00	183,900	145,208	524,160

Device Routing Invert Outlet Devices
\#1 Primary 138.00' 60.0" Round Culvert
$\mathrm{L}=380.0^{\prime}$ RCP, end-section conforming to fill, $\mathrm{Ke}=0.500$
Inlet / Outlet Invert= 138.00' / 135.70' S=0.0061 '/' Cc= 0.900
$\mathrm{n}=0.013$ Concrete pipe, bends \& connections, Flow Area= 19.63 sf
Primary OutFlow Max=231.42 cfs @ 15.17 hrs HW=146.95' TW=133.05' (Dynamic Tailwater)
L-1=Culvert (Barrel Controls 231.42 cfs @ 11.79 fps)

Summary for Pond 2FP: FRENCH'S STREAM WEST BRANCH

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 133.20' @ 13.51 hrs Surf.Area= 80,170 sf Storage $=177,475$ cf
Plug-Flow detention time $=6.0 \mathrm{~min}$ calculated for 380.682 af (100% of inflow)
Center-of-Mass det. time $=5.7 \mathrm{~min}(1,155.1-1,149.4)$

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	125.90^{\prime}	665,278 cf	Custom Stage Data (Prismatic)Listed below (Recalc)

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
125.90	0	0	0
130.00	17,650	36,182	36,182
131.00	22,340	19,995	56,177
132.00	56,105	39,223	95,400
133.00	76,835	66,470	161,870
134.00	93,610	85,223	247,092
135.00	111,175	102,393	349,485
136.00	153,700	132,438	481,922
137.00	213,010	183,355	665,278

Device	Routing	Invert	Outlet Devices
\#1	Primary	127.60'	60.0" Round Culvert
			$\mathrm{L}=34.0$ ' RCP, end-section conforming to fill, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 126.60' / 127.60' S=-0.0294 '/' Cc= 0.900 $\mathrm{n}=0.013$, Flow Area= 19.63 sf
\#2	Secondary	126.70'	72.0" Round Culvert
			$\mathrm{L}=34.0{ }^{\prime} \mathrm{RCP}$, end-section conforming to fill, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 125.90' / 126.70' S=-0.0235 '/' Cc= 0.900 $\mathrm{n}=0.013$, Flow Area $=28.27 \mathrm{sf}$
\#3	Tertiary	135.50'	10.0' long x 20.0' breadth Spillway over Path
			Head (feet) 0.200 .400 .600 .801 .001 .201 .401 .60
			Coef. (English) 2.682 .702 .702 .642 .632 .642 .642 .63

Primary OutFlow Max=159.00 cfs @ 13.51 hrs HW=133.20' TW=0.00' (Dynamic Tailwater) L-1=Culvert (Barrel Controls 159.00 cfs @ 8.11 fps)

Secondary OutFlow Max=233.51 cfs @ 13.51 hrs HW=133.20' TW=0.00' (Dynamic Tailwater)
_2=Culvert (Barrel Controls 233.51 cfs @ 8.63 fps)
Tertiary OutFlow Max=0.00 cfs @ $0.00 \mathrm{hrs} \mathrm{HW}=125.90^{\prime}$ TW=0.00' (Dynamic Tailwater)
$\complement_{3=S p i l l w a y ~ o v e r ~ P a t h ~(~ C o n t r o l s ~} 0.00 \mathrm{cfs}$)

Summary for Pond 2IP: PROPOSED PHASE 1 BASIN

Inflow Area $=112.800$ ac, 18.86% Impervious, Inflow Depth $=5.46$ " for 100-year event
Inflow $=232.37$ cfs @ 12.14 hrs, Volume= 51.293 af
Outflow $=59.57 \mathrm{cfs}$ @ 19.75 hrs , Volume= $\quad 45.564 \mathrm{af}$, Atten $=74 \%$, Lag= 456.8 min
Primary $=59.57$ cfs @ 19.75 hrs, Volume= 33.812 af

Routed to Pond 2EP : FRENCH'S STREAM WEST BRANCH
Secondary = $\quad 39.63$ cfs @ 15.62 hrs, Volume= 11.751 af Routed to Pond 2EP : FRENCH'S STREAM WEST BRANCH

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 147.16' @ 15.30 hrs Surf.Area= 170,290 sf Storage= 1,166,595 cf
Plug-Flow detention time= 369.2 min calculated for 45.564 af (89% of inflow)
Center-of-Mass det. time $=306.2 \mathrm{~min}(1,205.3-899.1)$

| Volume | Invert | Avail.Storage | Storage Description |
| ---: | ---: | ---: | ---: | ---: |
| $\# 1$ | $139.00 '$ | $1,312,748$ cf | Custom Stage Data (Pr |
| Clevation
 (feet) | Surf.Area
 (sq-ft) | Inc.Store
 (cubic-feet) | Cum.Store
 (cubic-feet) |
| 139.00 | 116,400 | 0 | 0 |
| 140.00 | 122,800 | 119,600 | 119,600 |
| 141.00 | 129,270 | 126,035 | 245,635 |
| 142.00 | 135,790 | 132,530 | 378,165 |
| 143.00 | 142,360 | 139,075 | 517,240 |
| 144.00 | 148,990 | 145,675 | 662,915 |
| 145.00 | 155,680 | 152,335 | 815,250 |
| 146.00 | 162,400 | 159,040 | 974,290 |
| 147.00 | 169,220 | 165,810 | $1,140,100$ |
| 148.00 | 176,075 | 172,648 | $1,312,748$ |

Device	Routing	Invert	Outlet Devices
\#1	Primary	139.00'	36.0" Round Culvert $\mathrm{L}=100.0^{\prime}$ RCP, end-section conforming to fill, $\mathrm{Ke}=0.500$ Inlet / Outlet Invert= 139.00' / 137.00' S= 0.0200 '/' Cc= 0.900 $\mathrm{n}=0.013$, Flow Area $=7.07 \mathrm{sf}$
\#2	Device 1	141.00'	36.0" W x 10.0" H Vert. Orifice/Grate $\mathrm{C}=0.600$ Limited to weir flow at low heads
\#3	Device 1	142.50'	36.0" W x 12.0" H Vert. Orifice/Grate C= 0.600 Limited to weir flow at low heads
\#4	Device 1	144.00'	$36.0^{\prime \prime} \times 36.0$ " Horiz. Orifice/Grate $\mathrm{C}=0.600$ Limited to weir flow at low heads
\#5	Secondary	146.00'	20.0' long x 20.0' breadth Broad-Crested Rectangular Weir Head (feet) $0.20 \quad 0.40 \quad 0.60 \quad 0.801 .001 .201 .401 .60$ Coef. (English) 2.682 .702 .702 .642 .632 .642 .642 .63

Primary OutFlow Max=59.66 cfs @ 19.75 hrs HW=145.33' TW=142.26' (Dynamic Tailwater)
-1=Culvert (Inlet Controls 59.66 cfs @ 8.44 fps)
-2=Orifice/Grate (Passes < 21.10 cfs potential flow)
-3=Orifice/Grate (Passes < 22.02 cfs potential flow)
-4=Orifice/Grate (Passes < 50.05 cfs potential flow)
Secondary OutFlow Max=39.73 cfs @ 15.62 hrs HW=147.14' TW=146.91' (Dynamic Tailwater)
${ }^{-5}$ =Broad-Crested Rectangular Weir(Weir Controls 39.73 cfs @ 1.74 fps)

Summary for Pond 2JP: PROPOSED BASIN

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 165.14' @ 12.47 hrs Surf.Area= 38,103 sf Storage= 139,715 cf
Plug-Flow detention time $=111.8$ min calculated for 7.976 af (96% of inflow)
Center-of-Mass det. time=87.8 $\mathrm{min}(873.2-785.4)$

Summary for Pond 2KP: PROPOSED BASIN

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev=152.50' @ 12.48 hrs Surf.Area= 56,254 sf Storage $=220,968 \mathrm{cf}$
Plug-Flow detention time $=198.6$ min calculated for 9.493 af (90% of inflow)
Center-of-Mass det. time $=151.9 \mathrm{~min}$ (945.4-793.5)

Primary OutFlow Max=33.75 cfs @ 12.48 hrs HW=152.50' TW=131.69' (Dynamic Tailwater)
-1=Culvert (Passes 33.75 cfs of 58.96 cfs potential flow)
-2=Orifice/Grate (Orifice Controls 13.02 cfs @ 8.68 fps)
-3=Orifice/Grate (Orifice Controls 11.44 cfs @ 5.72 fps)
—4=Orifice/Grate (Weir Controls 9.29 cfs @ 2.32 fps)
Secondary OutFlow Max=0.00 cfs @ 12.48 hrs HW=152.50' TW=131.69' (Dynamic Tailwater) -5=Broad-Crested Rectangular Weir(Weir Controls 0.00 cfs @ 0.10 fps)

Summary for Pond 2LP: PROPOSED BASIN

Routed to Pond 2FP : FRENCH'S STREAM WEST BRANCH
Secondary = $\quad 0.00$ cfs @ 0.00 hrs, Volume= 0.000 af
Routed to Pond 2FP : FRENCH'S STREAM WEST BRANCH
Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 158.56' @ 12.39 hrs Surf.Area= 26,494 sf Storage= 81,164 cf
Plug-Flow detention time $=87.2$ min calculated for 5.537 af (96% of inflow)
Center-of-Mass det. time $=64.5 \min (847.0-782.5)$

Primary OutFlow Max=24.21 cfs @ 12.39 hrs HW=158.56' TW=131.43' (Dynamic Tailwater)
—1=Culvert (Inlet Controls 24.21 cfs @ 7.71 fps)
-2=Orifice/Grate (Passes < 23.09 cfs potential flow)
-3=Orifice/Grate (Passes < 10.64 cfs potential flow)
-4=Orifice/Grate (Passes < 0.41 cfs potential flow)
Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=155.00' TW=125.90' (Dynamic Tailwater)
${ }^{4}$ 5=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Pond 2MP: PROPOSED BASIN

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 181.92' @ 12.18 hrs Surf.Area= 21,869 sf Storage= $87,767 \mathrm{cf}$
Plug-Flow detention time $=47.0 \mathrm{~min}$ calculated for 10.264 af (98% of inflow)
Center-of-Mass det. time $=36.7 \mathrm{~min}(819.2-782.5)$

Primary OutFlow Max=82.50 cfs @ 12.18 hrs HW=181.92' TW=153.37' (Dynamic Tailwater)
L1=Culvert (Inlet Controls 82.50 cfs @ 8.58 fps)
-2=Orifice/Grate (Passes < 14.75 cfs potential flow)
-3=Orifice/Grate (Passes < 24.66 cfs potential flow)
-4=Orifice/Grate (Passes < 60.07 cfs potential flow)
Secondary OutFlow Max=7.39 cfs @ 12.18 hrs HW=181.92' TW=153.37' (Dynamic Tailwater) — $\mathbf{5 =}$ Broad-Crested Rectangular Weir(Weir Controls 7.39 cfs @ 1.75 fps)

Summary for Pond 3AP: FRENCH'S STREAM EAST BRANCH

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 147.92' @ 13.38 hrs Surf.Area= 137,190 sf Storage= 114,298 cf
Plug-Flow detention time= 9.2 min calculated for 27.291 af (100% of inflow)
Center-of-Mass det. time $=8.9$ min (880.7-871.8)

Summary for Pond 3BP: FRENCH'S STREAM EAST BRANCH

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 136.34' @ 13.51 hrs Surf.Area= 73,867 sf Storage $=242,197$ cf
Plug-Flow detention time $=12.5 \mathrm{~min}$ calculated for 82.974 af (100% of inflow)
Center-of-Mass det. time=12.5 $\min (910.3-897.8)$

SWNAS - Proposed Watershed Swamp River
Prepared by Tetra Tech
Printed 12/1/2023
HydroCAD® 10.20-2g s/n 03991 © 2022 HydroCAD Software Solutions LLC

| | $\begin{array}{rl}\text { Area Listing (all nodes) } \\ \text { Area } \\ \text { (acres) }\end{array}$ | CN |
| ---: | ---: | :--- | \(\left.\begin{array}{l}Description

(subcatchment-numbers)\end{array}\right]\)| 12.120 | 61 | $>75 \%$ Grass cover, Good, HSG B (4C, 5B) |
| ---: | :--- | :--- |
| 1.500 | 74 | $>75 \%$ Grass cover, Good, HSG C (4C, 4D) |
| 1.350 | 80 | $>75 \%$ Grass cover, Good, HSG D (4C) |
| 5.360 | 48 | Brush, Good, HSG B (4A, 4B, 4C) |
| 1.360 | 73 | Brush, Good, HSG D (4C) |
| 7.470 | 98 | Pavement (4A, 4B, 4C) |
| 88.710 | 88 | Proposed Development Area (4D, 5C, 5D) |
| 0.600 | 100 | Water - Basin Area (4A, 4B) |
| 36.490 | 55 | Woods, Good, HSG B (4C, 5A, 5B, 5D) |
| 2.630 | 70 | Woods, Good, HSG C (4C) |
| 60.540 | 77 | Woods, Good, HSG D (4C, 5A, 5C) |
| 218.130 | 77 | TOTAL AREA |

Summary for Subcatchment 4A:

Runoff $=3.20$ cfs @ 12.10 hrs, Volume $=0.264$ af, Depth= $0.79{ }^{\prime \prime}$
Routed to Pond 4AP : EXISTING PARKWAY BASIN
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 2-year Rainfall=3.40"

Area	ac)	CN	Description			
1.	340	98	Pavement			
0	200	100	Water - Basin Area			
	440	48	Brush, Good, HSG B			
	980	67	Weighted Average			
	440		61.31\% Pervious Area			
	540		38.69\% Impervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$			Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description
6.0						Direct Entry

Summary for Subcatchment 4B:

$10 "$ RCP pipe was assumed entering main 24 " pipeline and inverts were assumed 0.005 .
24"RCP - inverts assumed 0.005
(2) 48 " RCP were assumed 0.005 invert and only entered as $1-48$ " RCP

60"RCP and last 48" RCP had assumed invert at 0.005
Runoff $=\quad 11.77$ cfs @ 12.09 hrs, Volume $=$
Routed to Pond 4BP:EXISTING PARKWAY BASIN

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 2-year Rainfall=3.40"

Area	(ac)	CN	Description			
3.130		98	Pavement			
0.	. 400	100	Water - Basin Area			
	530	48	Brush, Good, HSG B			
	. 060	92	Weighted Average			
	530		13.05\% Pervious Area			
	530		86.9	\% Imper	ious Area	
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$			Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.0						Direct Entry

Summary for Subcatchment 4C:

Runoff $=17.58 \mathrm{cfs} @ 13.73 \mathrm{hrs}$, Volume= $\quad 5.362$ af, Depth= $1.11^{\prime \prime}$
Routed to Reach 4R : DP-4 OLD SWAMP RIVER (UPSTREAM)
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 2-year Rainfall=3.40"

[^28]
Summary for Subcatchment 4D:

Runoff $=15.19$ cfs @ 12.09 hrs, Volume= 1.080 af, Depth= 2.01"
Routed to Pond 4DP : PROPOSED BASIN
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Type III 24-hr 2-year Rainfall=3.40"

Summary for Subcatchment 5A:

Assume Tc 10\% less than existing conditions.
Runoff $=17.84 \mathrm{cfs} @ 12.10 \mathrm{hrs}$, Volume $=$

Routed to | Reach $5 \mathrm{R}:$ DP-5 OLD SWAMP RIVER |
| :--- |
| (DOWNSTREAM) |

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 2-year Rainfall=3.40"

Area (ac)	CN	Description	
2.670	55	Woods, Good, HSG B	
11.730	77	Woods, Good, HSG D	
14.400	73	Weighted Average	
14.400		100.00\% Pervious Area	
Tc Length Slope Velocity Capacity (min) (feet) (ft/ft) (ft/sec) (cfs)			
6.0			Direct Entry,

Summary for Subcatchment 5B:

Runoff $=\quad 2.60$ cfs @ 13.67 hrs, Volume= 1.009 af, Depth= $0.38{ }^{\prime \prime}$
Routed to Reach 5R : DP-5 OLD SWAMP RIVER (DOWNSTREAM)
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 2-year Rainfall=3.40"

Area (ac) C		, Description				
$\begin{array}{r} 23.560 \\ 8.370 \end{array}$		Woods, Good, HSG B				
		$1>75$	\% Grass c	ver, Good	HSG B	
31.930		Weighted Average				
31.9	930	100.	00\% Perv	ous Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
47.9	100	0.0100	0.03		Sheet Flow,	
					Woods: Dense underbrush n= 0.800	P2 $=3.40{ }^{\prime \prime}$
48.2	1,445	0.0100	0.50		Shallow Concentrated Flow, Woodland $\mathrm{Kv}=5.0 \mathrm{fps}$	

96.1 1,545 Total

Summary for Subcatchment 5C:

Runoff = 107.94 cfs @ 12.09 hrs, Volume= $\quad 7.668$ af, Depth= 1.93"
Routed to Pond 5CP : PROPOSED BASIN
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Type III 24-hr 2-year Rainfall=3.40"

Area (ac)	CN	Description	
$*$34.230 88 Proposed Development Area 13.460 77 Woods, Good, HSG D			
47.690	85	Weighted Average	
47.690		100.00\% Pervious Area	
Tc Length Slope Velocity Capacity (min) (feet) (ft/ft) (ft/sec) (cfs)			
6.0		Direct Entry,	

Summary for Subcatchment 5D:

Runoff $=122.02$ cfs @ 12.09 hrs, Volume $=8.677$ af, Depth= 2.01"
Routed to Pond 5DP : PROPOSED INFILTRATION BASIN
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Type III 24-hr 2-year Rainfall=3.40"

Summary for Reach 4R: DP-4 OLD SWAMP RIVER (UPSTREAM)

```
Inflow Area = 72.310 ac, 11.16% Impervious, Inflow Depth = 0.93" for 2-year event
Inflow = 18.07 cfs @ 13.73 hrs, Volume= 5.626 af
Outflow = 18.07 cfs @ 13.73 hrs, Volume= 5.626 af, Atten= 0%, Lag= 0.0 min
```

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs

Summary for Reach 5R: DP-5 OLD SWAMP RIVER (DOWNSTREAM)

```
Inflow Area = 145.820 ac, 0.00% Impervious, Inflow Depth > 0.87" for 2-year event
Inflow = 26.62 cfs @ 12.12 hrs, Volume= 10.556 af
Outflow = 26.62 cfs @ 12.12 hrs, Volume= 10.556 af, Atten= 0%, Lag= 0.0 min
```

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs

Summary for Pond 4AP: EXISTING PARKWAY BASIN

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 146.52' @ 12.49 hrs Surf.Area= 5,925 sf Storage= 2,898 cf
Plug-Flow detention time $=85.7 \mathrm{~min}$ calculated for 0.263 af (100% of inflow)
Center-of-Mass det. time= 85.7 min (967.6-881.9)

Primary OutFlow Max=1.08 cfs @ 12.49 hrs HW=146.52' TW=0.00' (Dynamic Tailwater)
—1=Culvert (Inlet Controls 1.08 cfs @ 2.50 fps)
Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=145.98' TW=0.00' (Dynamic Tailwater)
$\complement_{2=B r o a d-C r e s t e d ~ R e c t a n g u l a r ~ W e i r(~ C o n t r o l s ~} 0.00 \mathrm{cfs}$)

Summary for Pond 4BP: EXISTING PARKWAY BASIN

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 136.57' @ 24.34 hrs Surf.Area= 14,463 sf Storage= 37,451 cf
Plug-Flow detention time= (not calculated: initial storage exceeds outflow)
Center-of-Mass det. time= (not calculated: no outflow)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=132.00' TW=0.00' (Dynamic Tailwater)
—1=Culvert (Controls 0.00 cfs)
Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=132.00' TW=0.00' (Dynamic Tailwater)
—2=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Pond 4DP: PROPOSED BASIN

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 136.83' @ 24.34 hrs Surf.Area= 27,652 sf Storage= 47,063 cf
Plug-Flow detention time= (not calculated: initial storage exceeds outflow)
Center-of-Mass det. time= (not calculated: no outflow)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=135.00' TW=0.00' (Dynamic Tailwater)
$L_{1}=$ Culvert (Controls 0.00 cfs)
-2=Orifice/Grate (Controls 0.00 cfs)
-3=Orifice/Grate (Controls 0.00 cfs)
Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=135.00' TW=0.00' (Dynamic Tailwater)
-4=Broad-Crested Rectangular Weir(Controls 0.00 cfs)

Summary for Pond 5CP: PROPOSED BASIN

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 173.65' @ 12.64 hrs Surf.Area= 98,839 sf Storage= 157,264 cf
Plug-Flow detention time $=258.8$ min calculated for 7.549 af (98% of inflow)
Center-of-Mass det. time $=249.5 \mathrm{~min}(1,073.0-823.4)$

Primary OutFlow Max=15.36 cfs @ 12.64 hrs HW=173.65' TW=0.00' (Dynamic Tailwater)
$-1=C u l v e r t$ (Passes 15.36 cfs of 19.50 cfs potential flow)
-2=Orifice/Grate (Orifice Controls 15.36 cfs @ 5.12 fps)
$-3=$ Orifice/Grate (Controls 0.00 cfs)
4=Orifice/Grate (Controls 0.00 cfs)
Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=172.00' TW=0.00' (Dynamic Tailwater)
$L_{5=\text { Broad-Crested Rectangular Weir (Controls } 0.00 \mathrm{cfs}) ~}^{\text {(}}$

Summary for Pond 5DP: PROPOSED INFILTRATION BASIN

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 143.89' @ 13.93 hrs Surf.Area= 99,851 sf Storage $=180,706$ cf
Plug-Flow detention time=(not calculated: outflow precedes inflow)
Center-of-Mass det. time $=286.6 \mathrm{~min}(1,106.5-819.9)$

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	142.00^{\prime}	$628,438 \mathrm{cf}$	Custom Stage Data (Prismatic)Listed below (Recalc)

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
142.00	91,825	0	0
143.00	96,055	93,940	93,940
144.00	100,340	98,198	192,138
145.00	104,600	102,470	294,608
146.00	109,000	106,800	401,408
147.00	113,530	111,265	512,673
148.00	118,000	115,765	628,438

Device	Routing	Invert	Outlet Devices
\#1	Primary	142.00'	42.0" Round Culvert
			$\mathrm{L}=100.0{ }^{\prime} \mathrm{RCP}$, end-section conforming to fill, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 142.00' $140.00^{\prime} \quad \mathrm{S}=0.0200$ '/' Cc= 0.900
\#2	Device 1	143.50'	36.0" W x 12.0" H Vert. Orifice/Grate $\mathrm{C}=0.600$
			Limited to weir flow at low heads
\#3	Device 1	145.75'	24.0" \times 24.0" Horiz. Orifice/Grate $\mathrm{C}=0.600$
			Limited to weir flow at low heads
\#4	Secondary	147.30'	10.0' long x 20.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.200 .400 .600 .801 .001 .201 .401 .60
			Coef. (English) 2.682 .702 .702 .642 .632 .642 .642 .63
\#5	Discarded	142.00'	$2.410 \mathrm{in} / \mathrm{hr}$ Exfiltration over Surface area

Discarded OutFlow Max=5.57 cfs @ 13.93 hrs HW=143.89' (Free Discharge)
${ }^{4} \mathbf{5}=$ Exfiltration (Exfiltration Controls 5.57 cfs)
Primary OutFlow Max=2.31 cfs @ 13.93 hrs HW=143.89' TW=0.00' (Dynamic Tailwater)
${ }^{-1}=$ Culvert (Passes 2.31 cfs of 24.71 cfs potential flow)
-2=Orifice/Grate (Orifice Controls 2.31 cfs @ 1.99 fps)
3=Orifice/Grate (Controls 0.00 cfs)
Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=142.00' TW=0.00' (Dynamic Tailwater)

Summary for Subcatchment 4A:

Runoff $=8.47$ cfs @ 12.09 hrs, Volume= 0.621 af, Depth= 1.87"
Routed to Pond 4AP : EXISTING PARKWAY BASIN
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10-year Rainfall=5.10"

Area	ac)	CN	Description			
1.	340	98	Pavement			
0	200	100	Water - Basin Area			
	440	48	Brush, Good, HSG B			
	980	67	Weighted Average			
	440		61.31\% Pervious Area			
	540		38.69\% Impervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$			Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description
6.0						Direct Entry

Summary for Subcatchment 4B:

$10 "$ RCP pipe was assumed entering main 24 " pipeline and inverts were assumed 0.005 .
24"RCP - inverts assumed 0.005
(2) 48 " RCP were assumed 0.005 invert and only entered as $1-48$ " RCP

60"RCP and last 48" RCP had assumed invert at 0.005

Runoff $=18.89$ cfs @ 12.08 hrs, Volume=
Routed to Pond 4BP : EXISTING PARKWAY BASIN

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10-year Rainfall=5.10"

	Area (ac)	CN	Description
$*$	3.130	98	Pavement
$*$	0.400	100	Water - Basin Area
	0.530	48	Brush, Good, HSG B
	4.060	92	Weighted Average
	0.530		13.05\% Pervious Area
	3.530		86.95% Impervious Area

| Tc
 (min) | Length
 (feet) | Slope
 $(\mathrm{ft} / \mathrm{ft})$ | Velocity
 $(\mathrm{ft} / \mathrm{sec})$ |
| ---: | ---: | ---: | ---: | | Capacity |
| ---: |
| (cfs) |\quad Description | Direct Entry, |
| :--- |

Summary for Subcatchment 4C:

Runoff $=39.18$ cfs @ 13.61 hrs, Volume $=11.367$ af, Depth= 2.36"
Routed to Reach 4R : DP-4 OLD SWAMP RIVER (UPSTREAM)
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10-year Rainfall=5.10"

[^29]
Summary for Subcatchment 4D:

Runoff $=26.53$ cfs @ 12.09 hrs, Volume= 1.914 af, Depth= 3.56"
Routed to Pond 4DP : PROPOSED BASIN
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10-year Rainfall=5.10"

Summary for Subcatchment 5A:

Assume Tc 10% less than existing conditions.
Runoff $=\quad 39.60 \mathrm{cfs} @ 12.09 \mathrm{hrs}$, Volume $=$

Routed to | Reach $5 \mathrm{R}:$ DP-5 OLD SWAMP RIVER |
| :--- |
| (DOWNSTREAM) |

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10 -year Rainfall=5.10"

Area (ac)	CN	Description	
2.670	55	Woods, Good, HSG B	
11.730	77	Woods, Good, HSG D	
14.400	73	Weighted Average	
14.400		100.00\% Pervious Area	
Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs) 6.0 Direct Entry,			

Summary for Subcatchment 5B:

Runoff = 10.68 cfs @ 13.45 hrs, Volume= $\quad 3.082$ af, Depth= 1.16"
Routed to Reach 5R : DP-5 OLD SWAMP RIVER (DOWNSTREAM)
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10-year Rainfall=5.10"

Area (ac) C		, Description				
$\begin{array}{r} 23.560 \\ 8.370 \end{array}$		Woods, Good, HSG B				
		$1>75$	\% Grass c	ver, Good	HSG B	
31.930		Weighted Average				
31.9	930	100.	00\% Perv	ous Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
47.9	100	0.0100	0.03		Sheet Flow,	
					Woods: Dense underbrush n= 0.800	P2 $=3.40{ }^{\prime \prime}$
48.2	1,445	0.0100	0.50		Shallow Concentrated Flow, Woodland $\mathrm{Kv}=5.0 \mathrm{fps}$	

96.1 1,545 Total

Summary for Subcatchment 5C:

Runoff = 191.38 cfs @ 12.09 hrs, Volume= 13.753 af, Depth= 3.46"
Routed to Pond 5CP : PROPOSED BASIN
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10-year Rainfall=5.10"

Area (ac)	CN	Description	
$*$34.230 88 Proposed Development Area 13.460 77 Woods, Good, HSG D			
47.690	85	Weighted Average	
47.690		100.00\% Pervious Area	
Tc Length Slope Velocity Capacity (min) (feet) (ft/ft) (ft/sec) (cfs)			
6.0		Direct Entry,	

Summary for Subcatchment 5D:

Runoff $=213.05$ cfs @ 12.09 hrs, Volume= 15.369 af, Depth= 3.56"
Routed to Pond 5DP : PROPOSED INFILTRATION BASIN
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10-year Rainfall=5.10"

Summary for Reach 4R: DP-4 OLD SWAMP RIVER (UPSTREAM)

```
Inflow Area = 72.310 ac, 11.16% Impervious, Inflow Depth = 2.13' for 10-year event
Inflow = 40.55 cfs @ 13.60 hrs, Volume= 12.815 af
Outflow = 40.55 cfs @ 13.60 hrs, Volume= 12.815 af, Atten= 0%, Lag= 0.0 min
```

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs

Summary for Reach 5R: DP-5 OLD SWAMP RIVER (DOWNSTREAM)

Inflow Area $=145.820$ ac, 0.00% Impervious, Inflow Depth > 2.06" for 10-year event
Inflow $=60.95$ cfs @ 12.38 hrs , Volume= 24.977 af
Outflow $=60.95 \mathrm{cfs} @ 12.38 \mathrm{hrs}$, Volume= 24.977 af , Atten= 0%, Lag $=0.0 \mathrm{~min}$
Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs

Summary for Pond 4AP: EXISTING PARKWAY BASIN

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 147.16' @ 12.41 hrs Surf.Area= 7,002 sf Storage= 7,049 cf
Plug-Flow detention time $=58.8$ min calculated for 0.621 af (100% of inflow)
Center-of-Mass det. time=59.1 min (913.4-854.3)

Primary OutFlow Max=3.12 cfs @ 12.41 hrs HW=147.16' TW=0.00' (Dynamic Tailwater)
—1=Culvert (Inlet Controls 3.12 cfs @ 3.97 fps)
Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=145.98' TW=0.00' (Dynamic Tailwater)
—2=Broad-Crested Rectangular Weir (Controls 0.00 cfs) $^{\text {2 }}$

Summary for Pond 4BP: EXISTING PARKWAY BASIN

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 137.30' @ 15.66 hrs Surf.Area= 16,042 sf Storage= 48,608 cf
Plug-Flow detention time $=590.5 \mathrm{~min}$ calculated for 0.438 af (31% of inflow)
Center-of-Mass det. time $=439.8 \mathrm{~min}(1,221.9-782.1)$

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	132.00^{\prime}	146,263 cf	Custom Stage Data (Prismatic)Listed below (Recalc)

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
132.00	1,775	0	0
133.00	4,345	3,060	3,060
134.00	7,050	5,698	8,758
135.00	10,730	8,890	17,648
136.00	13,160	11,945	29,593
137.00	15,450	14,305	43,898
138.00	17,430	16,440	60,338
139.00	19,460	18,445	78,783
140.00	21,550	20,505	99,288
141.00	23,700	22,625	121,913
142.00	25,000	24,350	146,263

Device	Routing	Invert	Outlet Devices
\#1	Primary	136.90'	12.0" Round Culvert
			$\mathrm{L}=98.0$ ' RCP, end-section conforming to fill, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 136.90' / 135.23' S=0.0170 '/' Cc= 0.900
			$\mathrm{n}=0.013$ Concrete pipe, bends \& connections, Flow Area= 0.79 sf
\#2	Secondary	141.50'	10.0' long x 20.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.200 .400 .600 .801 .001 .201 .401 .60
			Coef. (English) 2.682 .702 .702 .642 .632 .642 .642 .63

Primary OutFlow Max=0.63 cfs @ 15.66 hrs HW=137.30' TW=0.00' (Dynamic Tailwater)
L-1=Culvert (Inlet Controls 0.63 cfs @ 2.15 fps)
Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=132.00' TW=0.00' (Dynamic Tailwater)
—2=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Pond 4DP: PROPOSED BASIN

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 137.75' @ 20.25 hrs Surf.Area= 29,757 sf Storage= $73,409 \mathrm{cf}$
Plug-Flow detention time $=820.5$ min calculated for 0.389 af (20% of inflow)
Center-of-Mass det. time $=659.1 \mathrm{~min}(1,462.7-803.7)$

Primary OutFlow Max=0.40 cfs @ 20.25 hrs HW=137.75' TW=0.00' (Dynamic Tailwater)
L1=Culvert (Passes 0.40 cfs of 8.52 cfs potential flow)
-2=Orifice/Grate (Orifice Controls 0.40 cfs @ 1.60 fps)
-3=Orifice/Grate (Controls 0.00 cfs)
Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=135.00' TW=0.00' (Dynamic Tailwater)
4=Broad-Crested Rectangular Weir(Controls 0.00 cfs)

Summary for Pond 5CP: PROPOSED BASIN

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 174.86' @ 12.55 hrs Surf.Area= 104,024 sf Storage= 280,494 cf
Plug-Flow detention time= 211.1 min calculated for 13.631 af (99% of inflow)
Center-of-Mass det. time $=205.6 \mathrm{~min}(1,012.3-806.8)$

Primary OutFlow Max=33.13 cfs @ 12.55 hrs HW=174.86' TW=0.00' (Dynamic Tailwater)
1=Culvert (Passes 33.13 cfs of 48.57 cfs potential flow)
-2=Orifice/Grate (Orifice Controls 22.17 cfs @ 7.39 fps)
-3=Orifice/Grate (Orifice Controls 10.96 cfs @ 3.65 fps)
4=Orifice/Grate (Controls 0.00 cfs)
Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=172.00' TW=0.00' (Dynamic Tailwater)
$L_{5=\text { Broad-Crested Rectangular Weir (Controls } 0.00 \mathrm{cfs}) ~}^{\text {(}}$

Summary for Pond 5DP: PROPOSED INFILTRATION BASIN

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 145.15' @ 12.92 hrs Surf.Area= 105,275 sf Storage= $310,715 \mathrm{cf}$
Plug-Flow detention time=(not calculated: outflow precedes inflow)
Center-of-Mass det. time $=257.4 \mathrm{~min}(1,061.1-803.7$)

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	142.00^{\prime}	$628,438 \mathrm{cf}$	Custom Stage Data (Prismatic)Listed below (Recalc)

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
142.00	91,825	0	0
143.00	96,055	93,940	93,940
144.00	100,340	98,198	192,138
145.00	104,600	102,470	294,608
146.00	109,000	106,800	401,408
147.00	113,530	111,265	512,673
148.00	118,000	115,765	628,438

Device	Routing	Invert	Outlet Devices
\#1	Primary	142.00'	42.0" Round Culvert
			$L=100.0{ }^{\prime}$ RCP, end-section conforming to fill, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 142.00' / 140.00' S=0.0200 '/' Cc= 0.900
			$\mathrm{n}=0.013$ Concrete pipe, bends \& connections, Flow Area= 9.62 sf
\#2	Device 1	143.50'	36.0" W x 12.0" H Vert. Orifice/Grate C= 0.600
			Limited to weir flow at low heads
\#3	Device 1	145.75'	24.0" \times 24.0" Horiz. Orifice/Grate $\mathrm{C}=0.600$
			Limited to weir flow at low heads
\#4	Secondary	147.30'	10.0' long x 20.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.200 .400 .600 .801 .001 .201 .401 .60
			Coef. (English) 2.682 .702 .702 .642 .632 .642 .642 .63
\#5	Discarded	142.00'	$2.410 \mathrm{in} / \mathrm{hr}$ Exfiltration over Surface area

Discarded OutFlow Max=5.87 cfs @ 12.92 hrs HW=145.15' (Free Discharge)
${ }^{-} \mathbf{5}=$ Exfiltration (Exfiltration Controls 5.87 cfs)
Primary OutFlow Max=15.39 cfs @ 12.92 hrs HW=145.15' TW=0.00' (Dynamic Tailwater)
$亡_{1}=$ Culvert (Passes 15.39 cfs of 55.19 cfs potential flow)
-2=Orifice/Grate (Orifice Controls 15.39 cfs @ 5.13 fps)
$-3=$ Orifice/Grate (Controls 0.00 cfs)
Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=142.00' TW=0.00' (Dynamic Tailwater)

Summary for Subcatchment 4A:

Runoff = 12.38 cfs @ 12.09 hrs, Volume= 0.890 af, Depth= 2.68"
Routed to Pond 4AP : EXISTING PARKWAY BASIN
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 25-year Rainfall=6.20"

Summary for Subcatchment 4B:

10 " RCP pipe was assumed entering main 24 " pipeline and inverts were assumed 0.005 .
24"RCP - inverts assumed 0.005
(2) 48 " RCP were assumed 0.005 invert and only entered as $1-48$ " RCP

60"RCP and last 48" RCP had assumed invert at 0.005
Runoff $=23.45$ cfs @ 12.08 hrs, Volume=
Routed to Pond 4BP : EXISTING PARKWAY BASIN

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 25-year Rainfall=6.20"

Summary for Subcatchment 4C:

Runoff $=54.71$ cfs @ 13.60 hrs, Volume= $\quad 15.685$ af, Depth= 3.26"
Routed to Reach 4R : DP-4 OLD SWAMP RIVER (UPSTREAM)
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 25-year Rainfall=6.20"

[^30]
Summary for Subcatchment 4D:

Runoff $=33.91$ cfs @ 12.09 hrs, Volume= 2.472 af, Depth= 4.60"
Routed to Pond 4DP : PROPOSED BASIN
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 25-year Rainfall=6.20"

Summary for Subcatchment 5A:

Assume Tc 10\% less than existing conditions.

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 25 -year Rainfall $=6.20$ "

Area (ac)	CN	Description	
2.670	55	Woods, Good, HSG B	
11.730	77	Woods, Good, HSG D	
14.400	73	Weighted Average	
14.400		100.00\% Pervious Area	
Tc Length Slope Velocity Capacity (min) (feet) (ft/ft) (ft/sec) (cfs)			
6.0			Direct Entry,

Summary for Subcatchment 5B:

Runoff $=17.84$ cfs @ 13.35 hrs, Volume= 4.786 af, Depth= $1.80^{\prime \prime}$
Routed to Reach 5R : DP-5 OLD SWAMP RIVER (DOWNSTREAM)
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 25-year Rainfall=6.20"

Area (ac) C		, Description				
$\begin{array}{r} 23.560 \\ 8.370 \end{array}$		Woods, Good, HSG B				
		$1>75$	\% Grass c	ver, Good	HSG B	
31.930		Weighted Average				
31.9	930	100.	00\% Perv	ous Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
47.9	100	0.0100	0.03		Sheet Flow,	
					Woods: Dense underbrush n= 0.800	P2 $=3.40{ }^{\prime \prime}$
48.2	1,445	0.0100	0.50		Shallow Concentrated Flow, Woodland $\mathrm{Kv}=5.0 \mathrm{fps}$	

[^31]
Summary for Subcatchment 5C:

Runoff $=245.93$ cfs @ 12.09 hrs , Volume= Routed to Pond 5CP : PROPOSED BASIN

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 25-year Rainfall=6.20"

Summary for Subcatchment 5D:

Runoff = 272.29 cfs @ 12.09 hrs, Volume= 19.856 af, Depth= 4.60"
Routed to Pond 5DP : PROPOSED INFILTRATION BASIN
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 25-year Rainfall=6.20"

Summary for Reach 4R: DP-4 OLD SWAMP RIVER (UPSTREAM)

```
Inflow Area = 72.310 ac, 11.16% Impervious, Inflow Depth = 3.04" for 25-year event
Inflow = 58.70 cfs @ 13.60 hrs, Volume= 18.325 af
Outflow = 58.70 cfs @ 13.60 hrs, Volume= 18.325 af, Atten= 0%, Lag= 0.0 min
```

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs

Summary for Reach 5R: DP-5 OLD SWAMP RIVER (DOWNSTREAM)

Inflow Area $=145.820$ ac, 0.00% Impervious, Inflow Depth > 2.92" for 25-year event
Inflow $=94.55$ cfs @ 12.12 hrs, Volume= $\quad 35.470$ af
Outflow $=94.55 \mathrm{cfs} @ 12.12 \mathrm{hrs}$, Volume $=35.470 \mathrm{af}$, Atten= 0%, Lag $=0.0 \mathrm{~min}$
Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs

Summary for Pond 4AP: EXISTING PARKWAY BASIN

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 147.66' @ 12.43 hrs Surf.Area= 7,752 sf Storage= 10,737 cf

Plug-Flow detention time $=54.0 \mathrm{~min}$ calculated for 0.889 af (100% of inflow)
Center-of-Mass det. time $=54.3 \min (897.9-843.6)$

Primary OutFlow Max=4.11 cfs @ 12.43 hrs HW=147.66' TW=0.00' (Dynamic Tailwater) —1=Culvert (Inlet Controls 4.11 cfs @ 5.23 fps)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=145.98' TW=0.00' (Dynamic Tailwater)
$\complement_{2=B r o a d-C r e s t e d ~ R e c t a n g u l a r ~ W e i r(~ C o n t r o l s ~} 0.00 \mathrm{cfs}$)

Summary for Pond 4BP: EXISTING PARKWAY BASIN

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 137.55' @ 13.62 hrs Surf.Area= 16,545 sf Storage= 52,744 cf
Plug-Flow detention time $=430.2$ min calculated for 0.802 af (45% of inflow)
Center-of-Mass det. time $=306.4 \mathrm{~min}(1,082.6-776.2)$

Primary OutFlow Max=1.49 cfs @ 13.62 hrs HW=137.55' TW=0.00' (Dynamic Tailwater)
L-1=Culvert (Inlet Controls 1.49 cfs @ 2.75 fps)
Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=132.00' TW=0.00' (Dynamic Tailwater) —2=Broad-Crested Rectangular Weir(Controls 0.00 cfs)

Summary for Pond 4DP: PROPOSED BASIN

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 138.11' @ 16.90 hrs Surf.Area= 30,600 sf Storage= 84,238 cf
Plug-Flow detention time $=634.9 \mathrm{~min}$ calculated for 0.947 af (38% of inflow)
Center-of-Mass det. time $=508.6 \mathrm{~min}(1,305.2-796.5)$

Primary OutFlow Max=0.84 cfs @ 16.90 hrs HW=138.11' TW=0.00' (Dynamic Tailwater)
L1=Culvert (Passes 0.84 cfs of 9.27 cfs potential flow)
-2=Orifice/Grate (Orifice Controls 0.84 cfs @ 3.34 fps)
-3=Orifice/Grate (Controls 0.00 cfs)
Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=135.00' TW=0.00' (Dynamic Tailwater)
4=Broad-Crested Rectangular Weir(Controls 0.00 cfs)

Summary for Pond 5CP: PROPOSED BASIN

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 175.59' @ 12.53 hrs Surf.Area= 107,211 sf Storage= $357,447 \mathrm{cf}$
Plug-Flow detention time $=193.0 \mathrm{~min}$ calculated for 17.727 af (99% of inflow)
Center-of-Mass det. time= 188.6 min (988.0-799.4)

Primary OutFlow Max=47.28 cfs @ 12.53 hrs HW=175.59' TW=0.00' (Dynamic Tailwater)
$1=$ Culvert (Passes 47.28 cfs of 62.90 cfs potential flow)
-2=Orifice/Grate (Orifice Controls 25.38 cfs @ 8.46 fps)
$-3=$ Orifice/Grate (Orifice Controls 16.64 cfs @ 5.55 fps)
4=Orifice/Grate (Weir Controls 5.26 cfs @ 1.92 fps)
Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=172.00' TW=0.00' (Dynamic Tailwater)
$L_{5=\text { Broad-Crested Rectangular Weir (Controls } 0.00 \mathrm{cfs}) ~}^{\text {(}}$

Summary for Pond 5DP: PROPOSED INFILTRATION BASIN

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 146.07' @ 12.74 hrs Surf.Area= 109,297 sf Storage= $408,561 \mathrm{cf}$
Plug-Flow detention time=(not calculated: outflow precedes inflow)
Center-of-Mass det. time $=248.3 \mathrm{~min}(1,044.8-796.5)$

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	142.00^{\prime}	$628,438 \mathrm{cf}$	Custom Stage Data (Prismatic)Listed below (Recalc)

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
142.00	91,825	0	0
143.00	96,055	93,940	93,940
144.00	100,340	98,198	192,138
145.00	104,600	102,470	294,608
146.00	109,000	106,800	401,408
147.00	113,530	111,265	512,673
148.00	118,000	115,765	628,438

Device	Routing	Invert	Outlet Devices
\#1	Primary	142.00'	42.0" Round Culvert
			$\mathrm{L}=100.0$ ' RCP, end-section conforming to fill, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 142.00' / 140.00' S=0.0200 '/' Cc= 0.900
\#2	Device 1	143.50'	$\text { 36.0" W x 12.0" H Vert. Orifice/Grate } \mathrm{C}=0.600$
			Limited to weir flow at low heads
\#3	Device 1	145.75'	24.0" \times 24.0" Horiz. Orifice/Grate $\mathrm{C}=0.600$
			Limited to weir flow at low heads
\#4	Secondary	147.30'	10.0' long x 20.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.200 .400 .600 .801 .001 .201 .401 .60
			Coef. (English) 2.682 .702 .702 .642 .632 .642 .642 .63
\#5	Discarded	142.00'	$2.410 \mathrm{in} / \mathrm{hr}$ Exfiltration over Surface area

Discarded OutFlow Max=6.10 cfs @ 12.74 hrs HW=146.07' (Free Discharge)
${ }^{4} \mathbf{5}=$ Exfiltration (Exfiltration Controls 6.10 cfs)
Primary OutFlow Max=25.35 cfs @ 12.74 hrs HW=146.07' TW=0.00' (Dynamic Tailwater)
$亡_{1}=$ Culvert (Passes 25.35 cfs of 70.49 cfs potential flow)
-2=Orifice/Grate (Orifice Controls 20.71 cfs @ 6.90 fps)
3=Orifice/Grate (Weir Controls 4.64 cfs @ 1.84 fps)
Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=142.00' TW=0.00' (Dynamic Tailwater)

Summary for Subcatchment 4A:

Runoff $=18.83$ cfs @ 12.09 hrs, Volume= 1.339 af, Depth= 4.04"
Routed to Pond 4AP : EXISTING PARKWAY BASIN
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 100-year Rainfall=7.90"

Area		CN	Description			
1.	340	98	Pavement			
0	200	100	Water - Basin Area			
	440	48	Brush, Good, HSG B			
	980	67	Weighted Average			
	440		61.31\% Pervious Area			
	540		38.6	\% Imperv	ious Area	
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$			Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.0						Direct Entry,

Summary for Subcatchment 4B:

10 " RCP pipe was assumed entering main 24 " pipeline and inverts were assumed 0.005 .
24"RCP - inverts assumed 0.005
(2) 48 " RCP were assumed 0.005 invert and only entered as $1-48$ " RCP

60"RCP and last 48" RCP had assumed invert at 0.005
Runoff $=\quad 30.44$ cfs @ 12.08 hrs, Volume=
Routed to Pond 4BP : EXISTING PARKWAY BASIN

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 100-year Rainfall=7.90"

	Area (ac)	CN	Description
$*$	3.130	98	Pavement
$*$	0.400	100	Water-Basin Area
0.530	48	Brush, Good, HSG B	
	4.060	92	Weighted Average
	0.530		13.05\% Pervious Area
	3.530		86.95\% Impervious Area

| Tc
 (min) | Length
 (feet) | Slope
 $(\mathrm{ft} / \mathrm{ft})$ | Velocity
 $(\mathrm{ft} / \mathrm{sec})$ | Capacity
 (cfs) |
| ---: | ---: | ---: | ---: | :--- | Description | Direct Entry, |
| :--- |

Summary for Subcatchment 4C:

Runoff $=79.82$ cfs @ 13.60 hrs, Volume= $\quad 22.749$ af, Depth= 4.72"
Routed to Reach 4R : DP-4 OLD SWAMP RIVER (UPSTREAM)
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 100-year Rainfall=7.90"

[^32]
Summary for Subcatchment 4D:

Runoff $=45.26$ cfs @ 12.08 hrs , Volume= $\quad 3.351$ af, Depth= 6.23"
Routed to Pond 4DP : PROPOSED BASIN
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 100-year Rainfall=7.90"

Summary for Subcatchment 5A:

Assume Tc 10\% less than existing conditions.
Runoff $=\quad 79.64$ cfs @ 12.09 hrs, Volume=
Routed to Reach 5R : DP-5 OLD SWAMP RIVER (DOWNSTREAM)

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 100-year Rainfall=7.90"

Area (ac)	CN	Description	
2.670	55	Woods, Good, HSG B	
11.730	77	Woods, Good, HSG D	
14.400	73	Weighted Average	
14.400		100.00\% Pervious Area	
Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs) 6.0 Direct Entry,			

Summary for Subcatchment 5B:

Runoff $=30.70$ cfs @ 13.35 hrs, Volume= $\quad 7.800$ af, Depth= 2.93"
Routed to Reach 5R : DP-5 OLD SWAMP RIVER (DOWNSTREAM)
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 100-year Rainfall=7.90"

Area (ac) CN Description						
$\begin{array}{r} \hline 23.560 \\ 8.370 \\ \hline \end{array}$		Woods, Good, HSG B				
		$1>75$	\% Grass c	ver, Good	HSG B	
31.930		7 Weighted Average				
	930	100.	00\% Perv	ous Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
47.9	100	0.0100	0.03		Sheet Flow,	
					Woods: Dense underbrush n= 0.800	P2 $=3.40{ }^{\prime \prime}$
48.2	1,445	0.0100	0.50		Shallow Concentrated Flow,	

96.1 1,545 Total

Summary for Subcatchment 5C:

Runoff $=330.04$ cfs @ 12.09 hrs, Volume $=24.309$ af, Depth= 6.12" Routed to Pond 5CP : PROPOSED BASIN

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 100-year Rainfall=7.90"
$\left.\begin{array}{lrrll}\text { Area (ac) } & \text { CN } & \text { Description } & \\ * 34.230 & 88 & \text { Proposed Development Area } \\ 13.460 & 77 & \text { Woods, Good, HSG D }\end{array}\right]$

Summary for Subcatchment 5D:

Runoff $=363.46$ cfs @ 12.08 hrs, Volume= 26.912 af, Depth= 6.23"
Routed to Pond 5DP : PROPOSED INFILTRATION BASIN
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 100-year Rainfall=7.90"

Summary for Reach 4R: DP-4 OLD SWAMP RIVER (UPSTREAM)

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs

Summary for Reach 5R: DP-5 OLD SWAMP RIVER (DOWNSTREAM)

Inflow Area $=145.820$ ac, 0.00% Impervious, Inflow Depth > 4.35" for 100-year event
Inflow = 154.24 cfs @ 12.34 hrs, Volume= 52.844 af
Outflow = 154.24 cfs @ 12.34 hrs , Volume= 52.844 af , Atten= 0%, Lag $=0.0 \mathrm{~min}$
Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs

Summary for Pond 4AP: EXISTING PARKWAY BASIN

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 148.47' @ 12.46 hrs Surf.Area= 8,987 sf Storage= 17,483 cf
Plug-Flow detention time $=52.7$ min calculated for 1.339 af (100% of inflow)
Center-of-Mass det. time= 52.9 min (884.6-831.7)

Primary OutFlow Max=5.33 cfs @ 12.46 hrs HW=148.47' TW=0.00' (Dynamic Tailwater)
—1=Culvert (Inlet Controls 5.33 cfs @ 6.79 fps)
Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=145.98' TW=0.00' (Dynamic Tailwater)
$\complement_{2=B r o a d-C r e s t e d ~ R e c t a n g u l a r ~ W e i r(~ C o n t r o l s ~} 0.00 \mathrm{cfs}$)

Summary for Pond 4BP: EXISTING PARKWAY BASIN

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 138.19' @ 12.74 hrs Surf.Area= 17,819 sf Storage= 63,713 cf
Plug-Flow detention time $=341.6 \mathrm{~min}$ calculated for 1.370 af (58% of inflow)
Center-of-Mass det. time $=234.3 \mathrm{~min}(1,003.8-769.4)$

Primary OutFlow Max=3.36 cfs @ 12.74 hrs HW=138.19' TW=0.00' (Dynamic Tailwater)
L-1=Culvert (Inlet Controls 3.36 cfs @ 4.28 fps)
Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=132.00' TW=0.00' (Dynamic Tailwater) —2=Broad-Crested Rectangular Weir(Controls 0.00 cfs)

Summary for Pond 4DP: PROPOSED BASIN

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 138.88' @ 15.98 hrs Surf.Area= 32,414 sf Storage $=108,470$ cf
Plug-Flow detention time $=651.0$ min calculated for 1.825 af (54% of inflow)
Center-of-Mass det. time $=542.1 \mathrm{~min}(1,330.3-788.2)$

Primary OutFlow Max=1.35 cfs @ 15.98 hrs HW=138.88' TW=0.00' (Dynamic Tailwater)
L-1=Culvert (Passes 1.35 cfs of 10.66 cfs potential flow)
-2=Orifice/Grate (Orifice Controls 1.35 cfs @ 5.39 fps)
-3=Orifice/Grate (Controls 0.00 cfs)
Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=135.00' TW=0.00' (Dynamic Tailwater)
4=Broad-Crested Rectangular Weir(Controls 0.00 cfs)

Summary for Pond 5CP: PROPOSED BASIN

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 176.56' @ 12.49 hrs Surf.Area= 111,542 sf Storage= 463,276 cf
Plug-Flow detention time= 170.2 min calculated for 24.181 af (99% of inflow)
Center-of-Mass det. time= 167.3 min (958.2-790.9)

Primary OutFlow Max=73.06 cfs @ 12.49 hrs HW=176.56' TW=0.00' (Dynamic Tailwater)
$1=$ Culvert (Passes 73.06 cfs of 77.67 cfs potential flow)
-2=Orifice/Grate (Orifice Controls 29.09 cfs @ 9.70 fps)
-3=Orifice/Grate (Orifice Controls 21.92 cfs @ 7.31 fps)
4=Orifice/Grate (Orifice Controls 22.05 cfs @ 5.51 fps)
Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=172.00' TW=0.00' (Dynamic Tailwater)
$L_{5=\text { Broad-Crested Rectangular Weir (Controls } 0.00 \mathrm{cfs}) ~}^{\text {(}}$

Summary for Pond 5DP: PROPOSED INFILTRATION BASIN

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak Elev= 147.29' @ 12.57 hrs Surf.Area= 114,821 sf Storage= 545,658 cf
Plug-Flow detention time=(not calculated: outflow precedes inflow)
Center-of-Mass det. time $=221.7 \mathrm{~min}(1,009.8-788.2)$

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	142.00^{\prime}	$628,438 \mathrm{cf}$	Custom Stage Data (Prismatic)Listed below (Recalc)

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
142.00	91,825	0	0
143.00	96,055	93,940	93,940
144.00	100,340	98,198	192,138
145.00	104,600	102,470	294,608
146.00	109,000	106,800	401,408
147.00	113,530	111,265	512,673
148.00	118,000	115,765	628,438

Device	Routing	Invert	Outlet Devices
\#1	Primary	142.00'	42.0" Round Culvert
			$\mathrm{L}=100.0{ }^{\prime} \mathrm{RCP}$, end-section conforming to fill, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 142.00' 140.00 ' S=0.0200 '/' Cc= 0.900
			$\mathrm{n}=0.013$ Concrete pipe, bends \& connections, Flow Area= 9.62 sf
\#2	Device 1	143.50'	36.0" W x 12.0" H Vert. Orifice/Grate C= 0.600
			Limited to weir flow at low heads
\#3	Device 1	145.75'	24.0" \times 24.0" Horiz. Orifice/Grate $\mathrm{C}=0.600$
			Limited to weir flow at low heads
\#4	Secondary	147.30'	10.0' long x 20.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.200 .400 .60 0.80 1.001 .201 .401 .60
			Coef. (English) 2.682 .702 .702 .642 .632 .642 .642 .63
\#5	Discarded	142.00'	$2.410 \mathrm{in} / \mathrm{hr}$ Exfiltration over Surface area

Discarded OutFlow Max=6.41 cfs @ 12.57 hrs HW=147.29' (Free Discharge)
${ }^{4} \mathbf{5}=$ Exfiltration (Exfiltration Controls 6.41 cfs)
Primary OutFlow Max=50.06 cfs @ 12.57 hrs HW=147.29' TW=0.00' (Dynamic Tailwater)
$L_{1}=$ Culvert (Passes 50.06 cfs of 87.15 cfs potential flow)
-2=Orifice/Grate (Orifice Controls 26.17 cfs @ 8.72 fps)
$3=$ Orifice/Grate (Orifice Controls 23.89 cfs @ 5.97 fps)
Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=142.00' TW=0.00' (Dynamic Tailwater)
—4 $^{\text {BBroad-Crested Rectangular Weir (Controls } 0.00 \text { cfs) }}$

Stormwater Management
Attachment 3: Supporting Documentation

NOAA Atlas 14, Volume 10, Version 3
Location name: Town of Rockland, Massachusetts, USA*
Latitude: 42.1521 ${ }^{\circ}$, Longitude: -70.93 ${ }^{\circ}$ Elevation: $150.61 \mathrm{ft}^{* *}$

* source: ESRI Maps
** source: USGS

POINT PRECIPITATION FREQUENCY ESTIMATES

Sanja Perica, Sandra Pavlovic, Michael St. Laurent, Carl Trypaluk, Dale Unruh, Orlan Wilhite
NOAA, National Weather Service, Silver Spring, Maryland
PF_tabular I PF_graphical | Maps_\&_aerials

PF tabular

PDS-based point precipitation frequency estimates with 90\% confidence intervals (in inches) ${ }^{1}$

Duration	Average recurrence interval (years)									
	1	2	5	10	25	50	100	200	500	1000
5-min	$\begin{gathered} \mathbf{0 . 3 0 2} \\ (0.231-0.392) \end{gathered}$	$\begin{gathered} \hline 0.376 \\ (0.287-0.488) \\ \hline \end{gathered}$	$\begin{gathered} 0.497 \\ (0.378-0.646) \end{gathered}$	$\begin{gathered} \mathbf{0 . 5 9 7} \\ (0.452-0.780) \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{0 . 7 3 5} \\ (0.543-1.00) \\ \hline \end{gathered}$	$\begin{gathered} 0.837 \\ (0.608-1.16) \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 0.948 \\ (0.674-1.36) \\ \hline \end{array}$	$\begin{gathered} 1.08 \\ (0.723-1.56) \\ \hline \end{gathered}$	$\begin{gathered} 1.28 \\ (0.828-1.90) \\ \hline \end{gathered}$	$\begin{gathered} 1.46 \\ (0.921-2.19) \end{gathered}$
10-min	$(0.327-0$	$\begin{array}{\|c\|} \hline 0.533 \\ (0.407-0.691) \\ \hline \end{array}$	$\begin{gathered} 0.704 \\ (0.536-0.916) \end{gathered}$	$\begin{array}{\|c\|} \hline 0.847 \\ (0.641-1.11) \\ \hline \end{array}$	$\begin{gathered} 1.04 \\ (0.769-1.42) \\ \hline \end{gathered}$	$\begin{gathered} 1.19 \\ (0.862-1.65) \\ \hline \end{gathered}$	$\begin{gathered} 1.34 \\ (0.955-1.93) \\ \hline \end{gathered}$	$\begin{gathered} 1.53 \\ (1.02-2.21) \end{gathered}$	$\begin{gathered} 1.82 \\ (1.17-2.70) \\ \hline \end{gathered}$	$\begin{gathered} 2.06 \\ 1.31-3.11) \end{gathered}$
15-min	$\mathbf{0 . 5 0 4}$ $(0.385-0.65$	0.479	(0.630-1.08)	$\begin{gathered} \hline 0.996 \\ (0.754-1.30) \\ \hline \end{gathered}$	$\begin{gathered} 1.23 \\ (0.904-1.67) \end{gathered}$	$\begin{gathered} 1.40 \\ (1.01-1.94) \end{gathered}$	$\begin{gathered} 1.58 \\ (1.12-2.27) \end{gathered}$	$\begin{gathered} 1.80 \\ (1.21-2.60) \end{gathered}$	$\begin{gathered} \hline 2.14 \\ (1.38-3.17) \end{gathered}$	$\begin{gathered} \mathbf{2 . 4 3} \\ (1.54-3.65) \end{gathered}$
30-min	$\begin{gathered} \mathbf{0 . 7 0 0} \\ (0.535-0.907) \end{gathered}$	$\begin{array}{c\|} \hline \mathbf{0 . 8 7 2} \\ (0.665-1.13) \\ \hline \end{array}$	$\begin{gathered} 1.15 \\ (0.877-1.50) \end{gathered}$	$\begin{gathered} 1.39 \\ (1.05-1.81) \end{gathered}$	$\begin{gathered} 1.71 \\ (1.26-2.32) \end{gathered}$	$\begin{gathered} 1.94 \\ (1.41-2.69) \end{gathered}$	$\begin{gathered} \mathbf{2 . 2 0} \\ (1.56-3.16) \end{gathered}$	$\begin{gathered} 2.51 \\ (1.68-3.62) \end{gathered}$	$\begin{gathered} 2.98 \\ (1.92-4.42) \end{gathered}$	$\begin{gathered} 3.38 \\ (2.14-5.09) \end{gathered}$
60-min	$\begin{gathered} 0.896 \\ (0.685-1.16) \\ \hline \end{gathered}$	$\begin{array}{c\|} \hline 1.12 \\ (0.852-1.45) \\ \hline \end{array}$	$\begin{gathered} \hline 1.48 \\ 1.12-1.92) \end{gathered}$	$\begin{gathered} \hline 1.77 \\ 1.34-2.32) \end{gathered}$	$\begin{gathered} \mathbf{2 . 1 9} \\ (1.61-2.97) \end{gathered}$	$\begin{gathered} \mathbf{2 . 4 9} \\ (1.81-3.45) \end{gathered}$	$\begin{gathered} 2.82 \\ (2.00-4.05) \end{gathered}$	$\begin{gathered} \hline 3.22 \\ (2.15-4.64) \end{gathered}$	$\begin{gathered} \hline 3.82 \\ (2.47-5.66) \\ \hline \end{gathered}$	$\begin{gathered} \hline 4.33 \\ (2.74-6.53) \end{gathered}$
2-hr	$\begin{gathered} 1.14 \\ (0.872-1.46) \end{gathered}$	$\begin{gathered} 1.44 \\ (1.10-1.85) \\ \hline \end{gathered}$	$\begin{gathered} 1.92 \\ (1.47-2.48) \end{gathered}$	$\begin{gathered} 2.33 \\ (1.77-3.02) \\ \hline \end{gathered}$	$\begin{gathered} 2.88 \\ (2.14-3.90) \\ \hline \end{gathered}$	$\begin{gathered} 3.29 \\ (2.40-4.54) \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 3.74 \\ (2.68-5.34) \\ \hline \end{array}$	$\begin{gathered} 4.29 \\ (2.88-6.13) \end{gathered}$	$\begin{gathered} 5.13 \\ (3.33-7.54) \\ \hline \end{gathered}$	$\begin{gathered} \hline 5.86 \\ 3.72-8.74) \end{gathered}$
3-hr	$\begin{gathered} \hline 1.32 \\ (1.01-1.69) \end{gathered}$	$\begin{gathered} 1.66 \\ (1.28-2.13) \end{gathered}$	$\begin{gathered} \hline 2.23 \\ (1.71-2.86) \end{gathered}$	$\begin{gathered} 2.69 \\ (2.05-3.48) \\ \hline \end{gathered}$	$\begin{gathered} 3.34 \\ (2.48-4.50) \end{gathered}$	$\begin{gathered} 3.81 \\ (2.79-5.24) \end{gathered}$	$\begin{gathered} \hline 4.33 \\ (3.11-6.17) \end{gathered}$	$\begin{gathered} 4.97 \\ (3.34-7.07) \end{gathered}$	$\begin{gathered} \mathbf{5 . 9 6} \\ (3.87-8.70) \end{gathered}$	$\begin{gathered} \mathbf{6 . 8 1} \\ (4.33-10.1) \end{gathered}$
6-hr	$\begin{gathered} \hline 1.73 \\ (1.33-2.20) \end{gathered}$	$\begin{gathered} \mathbf{2 . 1 5} \\ (1.66-2.73) \end{gathered}$	$\begin{gathered} \hline 2.83 \\ (2.18-3.62) \\ \hline \end{gathered}$	$\begin{gathered} \hline 3.40 \\ (2.61-4.36) \\ \hline \end{gathered}$	$\begin{gathered} 4.19 \\ (3.13-5.59) \end{gathered}$	$\begin{gathered} 4.77 \\ (3.50-6.49) \end{gathered}$	$\begin{gathered} 5.40 \\ (3.88-7.60) \end{gathered}$	$\begin{gathered} 6.17 \\ (4.16-8.69) \end{gathered}$	$\begin{gathered} 7.36 \\ (4.79-10.6) \end{gathered}$	$\begin{gathered} \mathbf{8 . 3 8} \\ (5.35-12.3) \end{gathered}$
12-hr	$\begin{gathered} \hline 2.26 \\ (1.76-2.86) \end{gathered}$	$\begin{gathered} 2.75 \\ (2.13-3.48) \end{gathered}$	$\begin{gathered} 3.55 \\ (2.74-4.50) \\ \hline \end{gathered}$	$\begin{gathered} 4.21 \\ (3.24-5.36) \end{gathered}$	$\begin{gathered} 5.12 \\ (3.83-6.77) \end{gathered}$	$\begin{gathered} 5.79 \\ (4.26-7.79) \end{gathered}$	$\begin{gathered} \mathbf{6 . 5 2} \\ (4.70-9.07) \end{gathered}$	$\begin{gathered} 7.40 \\ (5.01-10.3) \end{gathered}$	$\begin{gathered} \hline 8.73 \\ (5.71-12.5) \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{9 . 8 6} \\ (6.31-14.3) \end{gathered}$
24-hr	$\begin{gathered} 2.77 \\ (2.16-3.48) \\ \hline \end{gathered}$	$\begin{gathered} 3.35 \\ (2.61-4.21) \end{gathered}$	$\begin{gathered} 4.31 \\ (3.35-5.43) \\ \hline \end{gathered}$	$\begin{gathered} 5.10 \\ (3.94-6.45) \end{gathered}$	$\begin{gathered} \mathbf{6 . 1 9} \\ (4.65-8.12) \end{gathered}$	$\begin{gathered} 7.00 \\ (5.17-9.34) \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 7.87 \\ (5.69-10.8) \\ \hline \end{array}$	$\begin{gathered} 8.92 \\ (6.06-12.3) \end{gathered}$	$\begin{gathered} 10.5 \\ (6.88-14.8) \end{gathered}$	$\begin{array}{c\|} \hline 11.8 \\ (7.59-17.0) \\ \hline \end{array}$
2-day	$\begin{gathered} 3.16 \\ (2.47-3.94) \\ \hline \end{gathered}$	$\begin{gathered} 3.88 \\ (3.04-4.84) \end{gathered}$	$\begin{gathered} 5.06 \\ (3.94-6.33) \end{gathered}$	$\begin{gathered} 6.04 \\ (4.68-7.58) \\ \hline \end{gathered}$	$\begin{gathered} 7.38 \\ (5.58-9.61) \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 8.38 \\ (6.22-11.1) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \mathbf{9 . 4 6} \\ (6.87-12.9) \\ \hline \end{array}$	$\begin{gathered} 10.8 \\ (7.34-14.7) \\ \hline \end{gathered}$	$\begin{gathered} 12.7 \\ (8.38-17.9) \end{gathered}$	$\begin{array}{c\|} \hline 14.4 \\ (9.30-20.5) \\ \hline \end{array}$
3-day	$\begin{gathered} 3.46 \\ (2.71-4.29) \\ \hline \end{gathered}$	$\begin{gathered} \hline 4.23 \\ (3.32-5.26) \end{gathered}$	$\begin{gathered} 5.50 \\ (4.30-6.85) \end{gathered}$	$\begin{gathered} 6.55 \\ (5.09-8.19) \\ \hline \end{gathered}$	$\begin{gathered} 7.99 \\ (6.05-10.4) \end{gathered}$	$\begin{gathered} 9.06 \\ (6.74-11.9) \end{gathered}$	$\begin{array}{\|c\|} \hline 10.2 \\ (7.44-13.9) \\ \hline \end{array}$	$\begin{gathered} 11.6 \\ (7.94-15.8) \end{gathered}$	$\begin{gathered} 13.7 \\ (9.06-19.1) \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 15.6 \\ (10.0-22.0) \\ \hline \end{array}$
4-day	$\begin{gathered} \hline 3.73 \\ (2.94-4.63) \\ \hline \end{gathered}$	$\begin{gathered} \hline 4.53 \\ (3.56-5.62) \\ \hline \end{gathered}$	$\begin{gathered} \hline 5.83 \\ (4.57-7.25) \\ \hline \end{gathered}$	$\begin{gathered} \hline 6.92 \\ (5.39-8.62) \\ \hline \end{gathered}$	$\begin{gathered} 8.40 \\ (6.37-10.9) \\ \hline \end{gathered}$	$\begin{array}{c\|} \hline 9.51 \\ (7.08-12.5) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 10.7 \\ (7.79-14.5) \\ \hline \end{array}$	$\begin{gathered} 12.1 \\ (8.31-16.4) \\ \hline \end{gathered}$	$\begin{gathered} 14.3 \\ (9.46-19.9) \\ \hline \end{gathered}$	$\begin{array}{c\|} \hline 16.2 \\ (10.5-22.7) \\ \hline \end{array}$
7-day	$\begin{gathered} \hline 4.50 \\ (3.55-5.54) \end{gathered}$	$\begin{gathered} 5.32 \\ (4.20-6.56) \end{gathered}$	$\begin{gathered} \hline \mathbf{6 . 6 7} \\ (5.25-8.24) \end{gathered}$	$\begin{gathered} \hline 7.79 \\ (6.09-9.66) \\ \hline \end{gathered}$	$\begin{gathered} 9.34 \\ (7.10-12.0) \end{gathered}$	$\begin{gathered} 10.5 \\ (7.83-13.6) \end{gathered}$	$\begin{array}{\|c} \hline 11.7 \\ (8.54-15.7) \\ \hline \end{array}$	$\begin{gathered} 13.2 \\ (9.05-17.7) \end{gathered}$	$\begin{gathered} \hline 15.4 \\ (10.2-21.1) \\ \hline \end{gathered}$	$\begin{gathered} 17.3 \\ (11.2-24.0) \\ \hline \end{gathered}$
10-day	$\begin{gathered} 5.21 \\ (4.12-6.39) \\ \hline \end{gathered}$	$\begin{gathered} 6.05 \\ (4.79-7.44) \end{gathered}$	$\begin{gathered} 7.44 \\ (5.86-9.16) \\ \hline \end{gathered}$	$\begin{gathered} 8.59 \\ (6.73-10.6) \\ \hline \end{gathered}$	$\begin{gathered} 10.2 \\ (7.75-13.0) \end{gathered}$	$\begin{array}{\|c\|} \hline 11.4 \\ (8.49-14.7) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 12.6 \\ (9.19-16.7) \\ \hline \end{array}$	$\begin{gathered} 14.1 \\ (9.70-18.8) \\ \hline \end{gathered}$	$\begin{gathered} \hline 16.2 \\ (10.8-22.2) \\ \hline \end{gathered}$	$\begin{gathered} 18.1 \\ (11.7-25.0) \\ \hline \end{gathered}$
20-day	$\begin{gathered} \hline 7.27 \\ (5.78-8.86) \end{gathered}$	$\begin{gathered} \hline \mathbf{8 . 2 0} \\ (6.51-10.0) \end{gathered}$	$\begin{gathered} 9.73 \\ (7.70-11.9) \end{gathered}$	$\begin{gathered} \hline 11.0 \\ (8.65-13.5) \\ \hline \end{gathered}$	$\begin{gathered} 12.7 \\ (9.71-16.0) \end{gathered}$	$\begin{gathered} 14.1 \\ (10.5-17.9) \end{gathered}$	$\begin{gathered} 15.4 \\ (11.2-20.0) \end{gathered}$	$\begin{gathered} 16.9 \\ (11.7-22.3) \end{gathered}$	$\begin{gathered} 18.8 \\ (12.6-25.4) \end{gathered}$	$\begin{gathered} \mathbf{2 0 . 4} \\ (13.3-27.9) \end{gathered}$
30-day	$\begin{gathered} 8.99 \\ (7.16-10.9) \\ \hline \end{gathered}$	$\begin{gathered} 9.99 \\ (7.95-12.1) \end{gathered}$	$\begin{gathered} 11.6 \\ (9.22-14.1) \\ \hline \end{gathered}$	$\begin{gathered} \hline 13.0 \\ (10.2-15.8) \end{gathered}$	$\begin{gathered} 14.8 \\ (11.3-18.5) \end{gathered}$	$\begin{gathered} 16.3 \\ (12.2-20.5) \end{gathered}$	$\begin{gathered} 17.7 \\ (12.8-22.7) \end{gathered}$	$\begin{gathered} 19.1 \\ (13.3-25.1) \end{gathered}$	$\begin{gathered} \mathbf{2 1 . 0} \\ (14.0-28.1) \end{gathered}$	$\begin{gathered} \mathbf{2 2 . 3} \\ (14.6-30.4) \end{gathered}$
45-day	(8.91-13.5)	(9.76-14.8)	$\begin{gathered} \hline 14.0 \\ (11.1-17.0) \end{gathered}$	$\begin{gathered} 15.4 \\ (12.2-18.8) \\ \hline \end{gathered}$	\|(13.3-21.6)	$\begin{gathered} 19.0 \\ (14.2-23.8) \end{gathered}$	$\begin{gathered} 20.6 \\ (14.8-26.1) \\ \hline \end{gathered}$	(15.3-28.6)	(15.9-31.5)	$\begin{gathered} \mathbf{2 4 . 8} \\ (16.2-33.6) \end{gathered}$
60-day	$\begin{gathered} 13.0 \\ (10.4-15.6) \end{gathered}$	$\begin{gathered} 14.1 \\ (11.3-17.0) \end{gathered}$	$\begin{gathered} 16.0 \\ (12.7-19.3) \end{gathered}$	$\begin{gathered} \mathbf{1 7 . 5} \\ (13.9-21.2) \\ \hline \end{gathered}$	$\begin{gathered} 19.6 \\ (15.0-24.2) \end{gathered}$	$\begin{gathered} \mathbf{2 1 . 3} \\ (15.9-26.5) \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{2 2 . 9} \\ (16.5-28.9) \end{gathered}$	$\begin{gathered} 24.3 \\ (17.0-31.5) \end{gathered}$	$\begin{gathered} \mathbf{2 5 . 9} \\ (17.4-34.4) \end{gathered}$	$\begin{gathered} 27.0 \\ (17.7-36.3) \\ \hline \end{gathered}$

[^33]Back to Top

MAP LEGEND

Area of Interest (AOI)	\square	C
Area of Interest (AOI)	\square	C/D
Soils		
Soil Rating Polygons		
A	\square	Not rated or not available
A/D	Water Fe	ures
	\sim	Streams and Canals
B		
	Transpo	tion
B/D	H+	Rails
C	\sim	Interstate Highways
C/D	-	US Routes
D	\approx	Major Roads
Not rated or not available	2	Local Roads
Soil Rating Lines	Background	
$\cdots \mathrm{A}$		Aerial Photography
\cdots A/D		
$\cdots B$		
\cdots B/D		
$\cdots \mathrm{C}$		
\cdots C/D		
\cdots D		
* Not rated or not available		
Soil Rating Points		
$\square \quad \mathrm{A}$		
$\square \mathrm{A} / \mathrm{D}$		
$\square \quad \mathrm{B}$		
$\square \mathrm{B} / \mathrm{D}$		

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at scales ranging from 1:12,000 to 1:25,000.

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service Web Soil Survey URL
Coordinate System: Web Mercator (EPSG:3857)
Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: Norfolk and Suffolk Counties, Massachusetts Survey Area Data: Version 17, Sep 3, 2021

Soil Survey Area: Plymouth County, Massachusetts Survey Area Data: Version 14, Sep 2, 2021

Your area of interest (AOI) includes more than one soil survey area. These survey areas may have been mapped at different scales, with a different land use in mind, at different times, or at different levels of detail. This may result in map unit symbols, soil properties, and interpretations that do not completely agree across soil survey area boundaries.

Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

Date(s) aerial images were photographed: Aug 26, 2014—Oct 15, 2020

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
10	Scarboro and Birdsall soils, 0 to 3 percent slopes	A/D	4.5	0.1\%
31A	Walpole sandy loam, 0 to 3 percent slopes	B/D	8.8	0.3\%
51	Swansea muck, 0 to 1 percent slopes	B/D	67.1	2.1\%
52	Freetown muck, 0 to 1 percent slopes	B/D	76.2	2.4\%
71B	Ridgebury fine sandy loam, 3 to 8 percent slopes, extremely stony	D	41.3	1.3\%
245B	Hinckley loamy sand, 3 to 8 percent slopes	A	10.6	0.3\%
245C	Hinckley loamy sand, 8 to 15 percent slopes	A	2.8	0.1\%
254B	Merrimac fine sandy loam, 3 to 8 percent slopes	A	158.0	5.0\%
260B	Sudbury fine sandy loam, 2 to 8 percent slopes	B	31.6	1.0\%
302B	Montauk fine sandy loam, 0 to 8 percent slopes, extremely stony	C	2.7	0.1\%
305B	Paxton fine sandy loam, 3 to 8 percent slopes	C	29.8	0.9\%
310B	Woodbridge fine sandy loam, 3 to 8 percent slopes	C/D	84.5	2.7\%
312B	Woodbridge fine sandy loam, 0 to 8 percent slopes, extremely stony	C/D	0.4	0.0\%
317B	Scituate fine sandy loam, 3 to 8 percent slopes, extremely stony	C	37.7	1.2\%
420B	Canton fine sandy loam, 3 to 8 percent slopes	B	5.7	0.2\%
422B	Canton fine sandy loam, 0 to 8 percent slopes, extremely stony	B	5.0	0.2\%

Hydrologic Soil Group-Norfolk and Suffolk Counties, Massachusetts, and Plymouth County, Massachusetts

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
424B	Canton fine sandy loam, 3 to 8 percent slopes, extremely bouldery	A	0.4	0.0\%
602	Urban land, 0 to 15 percent slopes		202.6	6.4\%
623C	Woodbridge-Urban land complex, 3 to 15 percent slopes	C/D	35.3	1.1\%
626B	Merrimac-Urban land complex, 0 to 8 percent slopes	A	2.0	0.1\%
652	Udorthents, refuse substratum	A	10.7	0.3\%
653	Udorthents, sandy	A	38.6	1.2\%
654	Udorthents, loamy	A	65.7	2.1\%
655	Udorthents, wet substratum		82.0	2.6\%
Subtotals for Soil Survey Area			1,004.1	31.7\%
Totals for Area of Interest			3,172.0	100.0\%

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
1	Water		9.6	0.3\%
6A	Scarboro muck, coastal lowland, 0 to 3 percent slopes	A/D	9.8	0.3\%
11A	Rainberry coarse sand, 0 to 3 percent slopes	A/D	1.2	0.0\%
23A	Tihonet coarse sand, 0 to 3 percent slopes	A/D	7.5	0.2\%
37A	Massasoit - Mashpee complex, 0 to 3 percent slopes	D	35.4	1.1\%
48A	Brockton sandy loam, 0 to 3 percent slopes, extremely stony	C/D	15.8	0.5\%
49A	Norwell mucky fine sandy loam, 0 to 3 percent slopes, extremely stony	D	61.3	1.9\%
49B	Norwell mucky fine sandy loam, 3 to 8 percent slopes, extremely stony	D	6.4	0.2\%
51A	Swansea muck, 0 to 1 percent slopes	B/D	68.0	2.1\%
52A	Freetown muck, 0 to 1 percent slopes	B/D	80.3	2.5\%

Hydrologic Soil Group-Norfolk and Suffolk Counties, Massachusetts, and Plymouth County, Massachusetts

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
53A	Freetown muck, ponded, 0 to 1 percent slopes	B/D	22.0	0.7\%
69B	Mattapoisett loamy sand, 3 to 8 percent slopes, extremely stony	D	12.8	0.4\%
70A	Ridgebury fine sandy loam, 0 to 3 percent slopes	D	2.7	0.1\%
71A	Ridgebury fine sandy loam, 0 to 3 percent slopes, extremely stony	D	103.9	3.3\%
71B	Ridgebury fine sandy loam, 3 to 8 percent slopes, extremely stony	D	4.9	0.2\%
72A	Whitman fine sandy loam, 0 to 3 percent slopes	D	7.7	0.2\%
110B	Canton-Chatfield-Rock outcrop complex, 0 to 8 percent slopes, very stony	B	24.6	0.8\%
110C	Canton-Chatfield-Rock outcrop complex, 8 to 15 percent slopes, very stony	B	189.0	6.0\%
110E	Canton-Chatfield-Rock outcrop complex, 15 to 35 percent slopes, very stony	B	1.4	0.0\%
253B	Hinckley loamy sand, 3 to 8 percent slopes	A	35.6	1.1\%
253C	Hinckley loamy sand, 8 to 15 percent slopes	A	9.0	0.3\%
254B	Merrimac fine sandy loam, 3 to 8 percent slopes	A	91.6	2.9\%
256B	Deerfield loamy fine sand, 3 to 8 percent slopes	A	28.9	0.9\%
259B	Carver loamy coarse sand, 3 to 8 percent slopes	A	8.4	0.3\%
260B	Sudbury fine sandy loam, 3 to 8 percent slopes	A/D	0.0	0.0\%
289B	Hinckley gravelly sandy loam, 3 to 8 percent slopes, bouldery	A	37.7	1.2\%

Hydrologic Soil Group-Norfolk and Suffolk Counties, Massachusetts, and Plymouth County, Massachusetts

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
289C	Hinckley gravelly sandy loam, 8 to 15 percent slopes, bouldery	A	1.0	0.0\%
306B	Paxton fine sandy loam, 0 to 8 percent slopes, very stony	C	14.8	0.5\%
306C	Paxton fine sandy loam, 8 to 15 percent slopes, very stony	C	6.4	0.2\%
310B	Woodbridge fine sandy loam, 3 to 8 percent slopes	C/D	13.1	0.4\%
311A	Woodbridge fine sandy loam, 0 to 3 percent slopes, very stony	C/D	5.1	0.2\%
311B	Woodbridge fine sandy loam, 3 to 8 percent slopes, very stony	C/D	75.2	2.4\%
316B	Scituate gravelly sandy loam, 3 to 8 percent slopes, very stony	C/D	13.3	0.4\%
320B	Birchwood sand, 3 to 8 percent slopes	B/D	3.5	0.1\%
420A	Canton very fine sandy loam, 0 to 3 percent slopes	A	0.9	0.0\%
420B	Canton fine sandy loam, 3 to 8 percent slopes	B	98.7	3.1\%
420C	Canton fine sandy loam, 8 to 15 percent slopes	B	2.6	0.1\%
421B	Canton fine sandy loam, 0 to 8 percent slopes, very stony	B	51.0	1.6\%
421C	Canton fine sandy loam, 8 to 15 percent slopes, very stony	B	7.1	0.2\%
424B	Canton very fine sandy loam, 3 to 8 percent slopes, extremely bouldery	A	104.5	3.3\%
424C	Canton very fine sandy loam, 8 to 15 percent slopes, extremely bouldery	A	9.5	0.3\%
426A	Newfields fine sandy loam, 0 to 3 percent slopes	B	3.6	0.1\%
426B	Newfields fine sandy loam, 3 to 8 percent slopes	B	13.5	0.4\%

Hydrologic Soil Group—Norfolk and Suffolk Counties, Massachusetts, and Plymouth County, Massachusetts

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
427A	Newfields fine sandy loam, 0 to 3 percent slopes, extremely stony	B	53.3	1.7\%
427B	Newfields fine sandy loam, 3 to 8 percent slopes, extremely stony	B	30.5	1.0\%
435B	Plymouth loamy coarse sand, 3 to 8 percent slopes	A	1.8	0.1\%
453B	Gloucester - Canton complex, 3 to 8 percent slopes, extremely bouldery	A	12.2	0.4\%
453C	Gloucester - Canton complex, 8 to 15 percent slopes, extremely bouldery	A	9.4	0.3\%
600	Pits, gravel		20.3	0.6\%
602B	Urban land, 0 to 8 percent slopes		87.2	2.7\%
603A	Urban land, wet substratum. 0 to 3 percent slopes		3.9	0.1\%
626B	Merrimac-Urban land complex, 0 to 8 percent slopes	A	2.9	0.1\%
628B	Canton - Urban land complex, 0 to 8 percent slopes	A	11.9	0.4\%
640B	Urban land, till substratum, 0 to 8 percent slopes		101.1	3.2\%
641B	Urban land, outwash substratum, 0 to 8 percent slopes		51.9	1.6\%
652E	Udorthents, refuse substratum, 8 to 35 percent slopes	B	4.4	0.1\%
654B	Udorthents, loamy, 0 to 8 percent slopes	B	220.1	6.9\%
655A	Udorthents, wet substratum, 0 to 3 percent slopes	B/D	49.9	1.6\%
656B	Udorthents - Urban land complex, 0 to 8 percent slopes	B	2.7	0.1\%
657A	Aquepts, 0 to 3 percent slopes	D	99.6	3.1\%

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
659B	Udorthents, 0 to 8 percent slopes, gravelly	B	99.4	3.1\%
660C	Udorthents, 8 to 15 percent slopes, gravelly	B	0.8	0.0\%
665B	Udipsamments, 0 to 8 percent slopes	A	3.3	0.1\%
700A	Udipsamments, wet substratum, 0 to 3 percent slopes	A/D	2.3	0.1\%
Subtotals for Soil Survey Area			2,167.8	68.3\%
Totals for Area of Interest			3,172.0	100.0\%

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition
Component Percent Cutoff: None Specified
Tie-break Rule: Higher

[^0]: 143.9 2,508 Total

[^1]: 143.9 2,508 Total

[^2]: 89.9 1,134 Total

[^3]: 143.9 2,508 Total

[^4]: 89.9 1,134 Total

[^5]: 143.9 2,508 Total

[^6]: 89.9 1,134 Total

[^7]: 120.0 3,308 Total

[^8]: 68.3 1,990 Total

[^9]: 120.0 3,308 Total

[^10]: 68.3 1,990 Total

[^11]: 120.0 3,308 Total

[^12]: 68.3 1,990 Total

[^13]: 120.0 3,308 Total

[^14]: 68.3 1,990 Total

[^15]: 44.5 3,027 Total

[^16]: 72.2 1,740 Total

[^17]: 103.9 1,745 Total

[^18]: 44.5 3,027 Total

[^19]: 72.2 1,740 Total

[^20]: 103.9 1,745 Total

[^21]: 89.9 1,134 Total

[^22]: 44.5 3,027 Total

[^23]: 72.2 1,740 Total

[^24]: 103.9 1,745 Total

[^25]: 44.5 3,027 Total

[^26]: 72.2 1,740 Total

[^27]: 103.9 1,745 Total

[^28]: 120.0 3,308 Total

[^29]: 120.0 3,308 Total

[^30]: 120.0 3,308 Total

[^31]: 96.1 1,545 Total

[^32]: 120.0 3,308 Total

[^33]: ${ }^{1}$ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).
 Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values.
 Please refer to NOAA Atlas 14 document for more information.

